Topic 1. BNF grammars. Backus-Naur Form (BNF) grammars are a standard formalism for defining languages. All BNF grammars comprise terminals, nonterminals (aka syntactic categories), and production rules, the general form of which is:

\[
\langle \text{nonterminal} \rangle ::= \langle \text{form 1} \rangle | \cdots | \langle \text{form n} \rangle
\]

where each form describes a particular language form— that is, a string of terminals and non-terminals. Any string of terminals and nonterminals is called a sentential form. A term in the language is a string of terminals, constructed according to these rules. Terms are constructed by derivation steps, which relate sentential forms. One form is derived from another by replacing a nonterminal in one with a form appearing on the right-hand-side of a production rule associated with the nonterminal. Usually, one distinguished nonterminal is a start symbol. If \(G \) is a grammar, then the language of \(G \) is the set of terms that can be derived from the start symbol.

example: The language SHEEP. Let \(\{ S \} \) be the set of nonterminals, with \(S \) the start state, let \(\{ a, b \} \) be the set of terminals, and let the grammar definition be:

\[
S ::= b | Sa
\]

Note that this is a recursive definition. Terms in SHEEP include:

\(b, ba, baa, baaa, baaaa, \ldots \)

Since for example, using \(\rightarrow \) to denote a derivation step:

\[
S \rightarrow Sa \rightarrow Saa \rightarrow Saaa \rightarrow baaa
\]

They do not include the following, which are not terms:

\(S, SSa, Saa, \ldots \)

example: The language FROG. Let \(\{ F, G \} \) be the set of nonterminals, \(\{ r, i, b, t \} \) be the set of terminals, and the grammar definition be:

\[
F ::= rF | iG
G ::= bG | bF | t
\]

Note that this is a mutually recursive definition. Note also that each production rule defines a syntactic category. Terms in FROG include:

\(ibit, ribbit, ribiribbit, \ldots \)
Topic 2. BOOL, a language of boolean expressions. BNF grammars are used to express PL syntax. Before considering the syntax of Turing complete languages, we will consider simpler algorithmic languages. Here is a simple language of boolean expressions, BOOL:

\[
\begin{align*}
v & ::= \text{True} \mid \text{False} & \quad \text{values} \\
e & ::= v \mid (e \text{ And } e) \mid (e \text{ Or } e) \mid \text{Not } e & \quad \text{expressions}
\end{align*}
\]

Terms in the language of expressions include:

\[
\text{True}, (\text{True And False}), (\text{Not} (\text{True And False}) \text{ Or } \text{True}), \ldots
\]

I may omit parentheses if association is clear from context. Note that \(e\) and \(v\) are nonterminals, though we’ve previously called them metavariables.

Topic 3. Language semantics. BNF grammars are sufficient to specify the syntax of languages, but not their meaning. Endowing a language with mathematical or symbolic meaning is the function of a semantics. A semantics can be thought of as a mathematically precise documentation of language behavior. A significant advantage of a formal semantics is platform independence; once the language is implemented via an interpreter or compiler, if the implementation matches the semantic specification, you can be sure that programs can be re-run on any platform without modification. The Java Virtual Machine (JVM) exploits this idea. Their are two major techniques for specifying a semantics:

- **Denotational semantics**— specifies meaning in terms of mathematical entities, e.g. the meaning of BOOL would be specified in terms of boolean algebra

- **Operational semantics**— specifies the meaning of terms in an idealization of computation.

Operational semantics is the more popular technique currently, and we will focus on it.