CS103 Daily Doggie Bag 5

The most important topics and details of the day.

January 31, 2006

Topic 1. Recursive functions. Assume the following recursive definitions of the exponentiation and factorial functions:

```ocaml
let rec expt =
  (fun x -> if x = 0 then 1 else 2 * expt(x - 1))

let rec fact =
  (fun x -> if x = 0 then 1 else x * fact(x - 1))
```

To illustrate the meaning of these definitions, think of them as analogues of the following C functions:

```c
int expt(int x) {
    int n1, n2 = 1;
    if (x == 0) { return 1; }
    n1 = x - 1;
    n2 = expt(n1);
    return (2 * n2);
}

int fact(int x) {
    int n1, n2 = 1;
    if (x == 0) { return 1; }
    n1 = x - 1;
    n2 = fact(n1);
    return (x * n2);
}
```

Topic 2. Recursion and induction. Recursion and induction are deeply interrelated concepts. Induction is a method of proof analysis on natural numbers (mathematical induction), and recursively defined structures in general. Recursive programming is simplified by thinking inductively.

Topic 3. Mathematical induction. Mathematical induction is perhaps the most basic forms of induction. It is defined on the natural numbers, \(\mathbb{N} = \{0, 1, 2, 3, \ldots\} \). When we want to prove that property \(P \) holds for \(\mathbb{N} \), the general form is as follows:

- **proof:** By mathematical induction.
- **base case:** Prove that \(P(0) \) holds.
- **induction hypothesis:** Assume that \(P(j) \) holds for all \(0 \leq j < n \).
- **NB:** The IH holds for all values between 1 and \(n - 1 \); this will come into play in the homework.
- **induction step:** Given the induction hypothesis, prove that \(P(n) \) holds.
Mathematical induction is like a machine that lets us crank through all possible cases of the natural numbers; the base case gets us started at 0, and then the induction step gets us to 1, 2, 3,...

example:

proposition: For all \(n \in \mathbb{N} \), \(\text{expt } n \downarrow 2^n \).

proof: By mathematical induction on \(n \).

basis \(n = 0 \): If \(n = 0 \), then \(2^0 = 1 \), and \(\text{expt } 0 \downarrow 1 \) by definition of \(\text{expt} \).

induction hypothesis: For all \(0 \leq j < n \), \(\text{expt } j \downarrow 2^j \).

induction step: By definition of \(\text{expt} \), \(\text{expt } n \downarrow 2 \ast \text{expt } (n-1) \). But \(2^n = 2 \ast 2^{n-1} \) by properties of arithmetic, and by the induction hypothesis \(\text{expt } (n-1) \downarrow 2^{n-1} \), hence \(\text{expt } n \downarrow 2 \ast 2^{n-1} \), i.e. \(\text{expt } n \downarrow 2^n \).

\(\square \)

example:

proposition: For all \(n \in \mathbb{N} \), \(\text{fact } n \downarrow n! \).

proof: By mathematical induction on \(n \).

basis \(n = 0 \): If \(n = 0 \), then \(n! = 1 \) by definition, and \(\text{expt } 0 \downarrow 1 \) by definition of \(\text{expt} \).

induction hypothesis: For all \(0 \leq j < n \), \(\text{fact } j \downarrow j! \).

induction step: By definition of \(\text{fact} \), \(\text{fact } n \downarrow n \ast \text{fact } (n-1) \). But \(n! = n \ast (n-1)! \) by definition, and by the induction hypothesis \(\text{fact } (n-1) \downarrow (n-1)! \), hence \(\text{fact } n \downarrow n \ast (n-1)! \), i.e. \(\text{fact } n \downarrow n! \).

\(\square \)

Topic 4. Syntactic Sugar. So far, we have been naming functions using the usual “let” form for declarations. However, OCaml provides an appealing abbreviation for declaring functions:

\[
\begin{align*}
\text{let } f \; = \; & (\text{fun } x \rightarrow e) \triangleq \text{let } f \; x \; = \; e \\
\text{let rec } f \; = \; & (\text{fun } x \rightarrow e) \triangleq \text{let rec } f \; x \; = \; e \\
\text{let } f \; = \; & (\text{fun } x \rightarrow e) \text{ in } e' \triangleq \text{let } f \; x \; = \; e \text{ in } e' \\
\text{let rec } f \; = \; & (\text{fun } x \rightarrow e) \text{ in } e' \triangleq \text{let rec } f \; x \; = \; e \text{ in } e'
\end{align*}
\]

example:

\[
\begin{align*}
\text{let double } x \; = \; & 2 \ast x \triangleq \text{let double } \; = \; (\text{fun } x \rightarrow 2 \ast x) \\
\text{let rec } \text{fact } n \; = \; & \text{if } n \; = \; 0 \text{ then } 1 \text{ else } n \ast \text{fact } (n-1)
\end{align*}
\]

(In general, \(\triangleq \) means “equal by definition”). This is an example of *syntactic sugar*, a trick whereby we define more succinct and appealing language forms as macros for expressions in the basic syntax, rather than *ab initio*. This simplifies the theoretical development and implementation of the language, while still offering convenience to the programmer.

Topic 5. Commenting conventions. An absolutely essential aspect of programming is understandable documentation, to explain your code to yourself and others. Type annotations are an excellent way to document functions—in fact, the *declarative* nature of types is one of the most appealing characteristics of type analyses. Of course, with type inference, direct annotations are cumbersome and unnecessary; thus, type specifications should be moved to the comments, along with semantic descriptions. Comments should have the general form:
(*)
 <name> : \tau
 in : <formal parameters, expected invariants>
 out : <precise description of semantics>
*)

example:

(*)
 fact : int -> int
 in : x >= 0
 out : x!
*)

let rec fact x = if x = 0 then 1 else x * expt (x-1)

This convention will be expected in the homework assignments.