Topic 1. Lists. Lists are ordered sequences of heterogeneous data. The type of lists always reflects the type of its elements:

\[
\begin{align*}
[2,46] & : \text{int list} \\
[(3,4.0);(2,6.1);(5,8.9)] & : \text{(int * float) list} \\
[[3;5;3];[2;1];[]] & : \text{int list list}
\end{align*}
\]

The \textit{cons} notation :: serves double-duty, to construct lists:

\[
2::3::5::[] \Downarrow [2;3;5]
\]

and also to destruct lists, by use in a pattern:

\[
\text{let } (x::xs) = [2;3;5] \text{ in } x \Downarrow 2
\]

Note that cons always takes a single list element on the left, and a list on the right; naturally, the type of the element must agree with the type of the list, for example \(2::['a']\) is not well-typed. The \textit{empty list} is denoted \([]\). A list is recursively defined datastructure; any list \(l\) is either empty \([]\) (the base case), or a cons \(v::l'\) of a single element \(t\) and another list \(l'\) (the recursive case; note that lists \(l\) are defined in terms of smaller lists \(l'\) in this case).

Topic 2. Higher order functions. Higher order functions are functions that take other functions as arguments, and return functions as results. For example, functional composition can be defined in OCaml as follows:

\[
\text{let compose } (f,g) = (\text{fun } x -> f(g(x)))
\]

which could be used as follows:

\[
\text{let add1 } x = x + 1 \\
\text{let add2 } = \text{compose add1 add1} \\
\text{add1 } 2 \Downarrow 3 \\
\text{add2 } 2 \Downarrow 4
\]

Observe that the higher order nature of compose is reflected in its type, which specifies that it takes a pair of function types as arguments:

\[
\text{compose : } (('a \rightarrow 'b) \times ('c \rightarrow 'a)) \rightarrow 'c \rightarrow 'b
\]

Topic 3. Curried vs. uncurried style. Higher order functions give us another way of defining functions of more than one argument. For example, we could define a plus function, that adds two integer arguments, in a couple of ways:

\[
\text{let plus } (x,y) = x + y \ (* \text{uncurried style} *) \\
\text{let plus' } = (\text{fun } x -> \text{fun } y -> x + y) \ (* \text{curried style} *) \\
\text{let plus' } x y = x + y \ (* \text{curried style with syntactic sugaring} *)
\]
The curried style is useful in case you want to apply the function to just one of its arguments (a partial application):

```latex
let incr = plus’ 1
incr 2 \rightarrow 3
incr 3 \rightarrow 4
```

“Currying” is named after the great Computer Scientist and Programming Language theorist Haskell Curry, who studied the phenomena in the mid-20th century.

Topic 4. Abstracting patterns of control. Higher order programming techniques allow us to abstract patterns of control over datastructures, eliminating code duplication and capturing important programming patterns in a precise manner. For example, suppose we defined separate functions for doubling all elements of an integer list, and for turning all elements of an integer list into floats:

```ocaml
let rec double_all l = match l with
  | [] -> []
  | x::xs -> (2 * x) :: (double_all xs)

double_all : int list -> int list
```

```ocaml
let rec float_all l = match l with
  | [] -> []
  | x::xs -> (float x) :: (float_all xs)

float_all : int list -> float list
```

Observe how similar these functions are; at a higher level of abstraction, each is applying some transformation to every element of a given list. This pattern can be captured with the function `map`:

```ocaml
let rec map f l = match l with
  | [] -> []
  | (x::xs) -> (f x) :: (map f xs)

map : ('a -> 'b) -> 'a list -> 'b list
```

mapping a function across a list transforms each element of the list accordingly:

```ocaml
map (fun x -> 2 * x) [1;2;3;4] \rightarrow [2;4;6;8]
map (fun x -> float x) [1;2;3;4] \rightarrow [1.0;2.0;3.0;4.0]
```

In conjunction with partial application:

```ocaml
let double_all = map (fun x -> 2 * x)
let float_all = map float
```

We can use pattern matching to really get some elegant, powerful stuff going on. For example, imagine that we represent a graph as a list of pairs of \((x, y)\) coordinates:

```ocaml
let graph = [(1.0, 3.5);(2.2,4.6);(4.8,9.2)]
```

We can use `map` in conjunction with partial application and pattern matching that extracts the \(y\) coordinates from any graph:

```ocaml
let xcoords = map (fun (x,y) -> y)
xcoords graph \rightarrow [1.0;2.2;4.8]
```