Recognizers accept *syntactically correct* programs, but other properties of code *statically* (compile-time) detectable:

- Undeclared variables
- Unused variables
- Compatibility of function type and arguments
- ...

Too complex to be specified by grammars, or recognized by parsers
Static Analysis

Unfortunate but popular terminology: “semantic analysis”

- Formally, *semantics* are dynamic (run-time) properties
- Terminology confuses compile and run-time
- Some resolve confusion with the terminology *static semantics* (vs. *dynamic semantics*)
Type Systems

Static type analysis is a particular form of static analysis:

- Built on rigorous mathematical foundations
- Long history in theoretical computer science (back to when that was the only computer science)
- Various levels of expressiveness, various implementation costs

Dynamic type checking also available, used in e.g. Lisp (we won’t consider further)
The Appeal of Type Systems

Type analyses have succeeded in application to PLs for some very good reasons:

- Rigorous foundations allow guarantee of program safety via mathematical proofs
- Expressive type terms provide extra level of program description
- Type can be used to improve efficiency in compilation
Prelude to further discussion

In the following, we will consider some simple languages specified by high-level grammars:

- Grammars not necessarily ready for jcup
- Type analyses specified on expressions in language
- Trivial to translate analysis to work on abstract parse trees in implementation

Approach simplifies theoretical development; implementation simple matter of transcription.
A Simple Language

We begin with a simple language of arithmetic and function definition and application:

\[\begin{align*}
 x, f & \in \text{Var} & \text{identifiers} \\
 n & \in \mathbb{N} & \text{natural numbers} \\
 e & ::= x | n | e + e | e - e | e(e, \ldots, e) & \text{expressions} \\
 e & ::= \text{let } f(x_1, \ldots, x_n) = e \text{ in } e
\end{align*} \]

For example:

\[
 \text{let } \text{add}(x, y) = x + y \text{ in } \text{add}(2, 3)
\]

Note: recursion disallowed for simplicity (easy to add it)
Dynamic Semantics

To formally specify the run-time semantics of our language, we define an \textit{evaluation} relation \rightarrow^*.

Details omitted for brevity, but for example:

\begin{verbatim}
let add(x, y) = x + y in add(2, 3) \rightarrow^* 5
\end{verbatim}

Mathematical specification allows consideration of semantics in analysis of type system (also provides a cross-platform definition of PL behavior)
Going Wrong

Note that some expressions are semantically ill defined:

\[
\text{let } add(x, y) = x + y \text{ in } add + 4
\]

The subexpression \(add + 4 \) makes no sense here:

- In our formal semantics, \(add + 4 \) cannot be evaluated; such expressions said to be \textit{stuck}
- If an expression \(e \) evaluates to a stuck expression, \(e \) is said to \textit{go wrong}

Goal: rule out expressions that go wrong (semantically ill-defined programs)
Core Dumps and *Worse*

Semantically ill-defined programs undesirable on various levels:

- Unpredictable, platform-specific behaviour
- Segmentation faults, core dumps
- Memory leaks
- Significant security breaches
A Menagerie of Wrongness

Many examples of semantic ill-definedness:

- Applying functions to wrong types of args
- Pointer arithmetic
- Dereferencing dangling pointer
- Out-of-bounds array access
- ...

Here we consider a simple example, but the concepts generalize.
Going Right with Types

In short, a static type analysis allows us to reject semantically ill-defined programs.
To define a type analysis for our simple language, we first define a language of type terms:

\[
\tau ::= \text{int} \mid (\tau_1 \times \cdots \times \tau_n) \to \tau \quad \text{types}
\]

We then update our expression language to include type annotations on function parameters:

\[
x, f \in \text{Var} \quad \text{identifiers}
\]
\[
n \in \mathbb{N} \quad \text{natural numbers}
\]
\[
e ::= x \mid n \mid e + e \mid e - e \mid e(e, \ldots, e) \quad \text{expressions}
\]
\[
e ::= \text{let } f(x_1 : \tau_1, \ldots, x_n : \tau_n) = e \text{ in } e
\]

For example:

\[
\text{let } \text{add}(x : \text{int}, y : \text{int}) = x + y \text{ in } \text{add}(2, 3)
\]
The Type Analysis

We will formally specify our type analysis as a *proof system*:

- Promotes simplicity of presentation
- Eases proof of properties

Type analysis later implemented as *type checking*:

- Independence of specification and implementation promotes uniformity of analysis across platforms
- Must prove correspondance of specification and implementation
Type Judgements: Intuition

To assign a type to an expression, we will use the proof system to deduce valid typing assertions, called *judgements*

Idea: to deduce types for expressions, we recursively descend into expressions

Need to keep track of variable type bindings...
Type Environments

\[\Gamma ::= \emptyset \mid \Gamma; x : \tau \quad \text{type environments} \]

Definition 1
We define type environment lookup, denoted \(\Gamma(x) \), inductively as follows:

\[
\begin{align*}
(\Gamma; x : \tau)(x) &= \tau \\
(\Gamma; y : \tau)(x) &= \Gamma(x) \quad x \neq y
\end{align*}
\]

- LIFO structure on environments
- Extended for declarations in scope
- Implemented as *symbol tables* in automated type checking
Type Judgements

Now, we can define the form of type judgements:

\[J ::= \Gamma \vdash e : \tau \quad \text{type judgements} \]

We say that a judgement \(\Gamma \vdash e : \tau \) is valid iff it can be deduced.

We write \(e : \tau \) iff \(\emptyset \vdash e : \tau \) is valid.

Note: A fringe benefit of type analysis is a “free-variable analysis”; if \(e : \tau \) then \(e \) contains no undeclared variables.

16
Type Deductions

\[\text{INT} \quad \text{VAR} \quad \text{PLUS} \]
\[\Gamma(x) = \tau \quad \Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int} \]
\[\Gamma \vdash n : \text{int} \quad \Gamma \vdash x : \tau \quad \Gamma \vdash e_1 + e_2 : \text{int} \]

\[\text{MINUS} \]
\[\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int} \]
\[\Gamma \vdash e_1 - e_2 : \text{int} \]

\[\text{APP} \]
\[\Gamma \vdash e : (\tau_1 \cdots \tau_n) \rightarrow \tau \quad \Gamma \vdash e_1 : \tau_1 \quad \cdots \quad \Gamma \vdash e_n : \tau_n \]
\[\Gamma \vdash e(e_1, \ldots, e_n) : \tau \]

\[\text{FUN} \]
\[\Gamma; x_1 : \tau_1; \ldots; x_n : \tau_n \vdash e_1 : \tau' \quad \Gamma; f : (x_1 : \tau_1 \cdots x_n : \tau_n) \rightarrow \tau' \vdash e_2 : \tau \]
\[\Gamma \vdash \text{let } f(x_1 : \tau_1, \ldots, x_n : \tau_n) = e_1 \text{ in } e_2 : \tau \]
Example

\[
\frac{(x : \text{int})(x) = \text{int}}{x : \text{int} \vdash x : \text{int}} \quad \text{VAR} \quad \frac{x : \text{int} \vdash 1 : \text{int}}{x : \text{int} \vdash x + 1 : \text{int}} \quad \text{PLUS}
\]

\[
\frac{(\text{incr} : \text{int} \rightarrow \text{int})(\text{incr}) = \text{int} \rightarrow \text{int}}{\text{incr} : \text{int} \rightarrow \text{int} \vdash \text{incr} : \text{int} \rightarrow \text{int}} \quad \text{VAR} \quad \frac{\text{incr} : \text{int} \rightarrow \text{int} \vdash 2 : \text{int}}{\text{incr} : \text{int} \vdash \text{incr}(2) : \text{int}} \quad \text{APP}
\]

\[
\frac{x : \text{int} \vdash x + 1 : \text{int} \quad \text{incr} : \text{int} \rightarrow \text{int} \vdash \text{incr}(2) : \text{int}}{\emptyset \vdash \textbf{let incr}(x : \text{int}) = x + 1 \textbf{ in incr}(2) : \text{int}} \quad \text{FUN}
\]
Type Safety

Given our formal definition of evaluation and type validity, we can establish type safety:

Theorem 1 (Type Safety) If $e : \tau$ then e does not go wrong.

Well-typedness guarantees semantic well-formedness (run-time safety).
Type Checking

So far, we have discussed the specification of type analysis as a proof system.

Implementation must provide typecheck algorithm that computes valid types:

Theorem 2 (Type Checking Correctness) We have that \(\text{typecheck}(\Gamma, e)\) returns \(\tau\) iff \(\Gamma \vdash e : \tau\) is valid.

Defining typecheck for our system so far is trivial; all derivations are deterministic.
Type Checking Algorithm

typecheck(\(\Gamma, n\)) = int

typecheck(\(\Gamma, x\)) = \(\Gamma(x)\)

typecheck(\(\Gamma, e_1 + e_2\)) = if

\[
\begin{align*}
\text{typecheck}(\Gamma, e_1) & = \text{int} \\
\text{typecheck}(\Gamma, e_2) & = \text{int}
\end{align*}
\]

then int

else fail

typecheck(\(\Gamma, e_1 - e_2\)) = if

\[
\begin{align*}
\text{typecheck}(\Gamma, e_1) & = \text{int} \\
\text{typecheck}(\Gamma, e_2) & = \text{int}
\end{align*}
\]

then int

else fail
Type Checking Algorithm

typecheck(\(\Gamma, e(e_1, \ldots, e_n)\)) = if
\[\text{typecheck}(\Gamma, e) = (\tau_1 \ast \cdots \ast \tau_n) \rightarrow \tau\]
\[\text{typecheck}(\Gamma, e_1) = \tau_1\]
\[\vdots\]
\[\text{typecheck}(\Gamma, e_n) = \tau_n\]
then \(\tau\)
else fail
Type Checking Algorithm

typecheck(\Gamma, \text{let } f(x_1: \tau_1, \ldots, x_n: \tau_n) = e_1 \text{ in } e_2) =

\text{let } \Gamma' = \Gamma; x_1: \tau_1; \ldots; x_n: \tau_n
\text{let } \tau = \text{typecheck}(\Gamma', e_1)
\text{let } \Gamma'' = \Gamma; f: (\tau_1 \ast \cdots \ast \tau_n) \rightarrow \tau
\text{in } \text{typecheck}(\Gamma'', e_2)
Type Checking Algorithm

Note: this is essentially the core of the Lake type checker you will implement in Assignment 6.

Type checking can be implemented:

- Post-parsing
- During parsing (parsetime type-checking):
 - Type checking in parser actions
 - Type checking during abstract parse tree construction (Assignment 6 approach)

Parsetime checking more efficient, second pass over completed parse trees not required.
Type Reconstruction

So far, our type analysis has required type annotations on function parameters:

- Unwieldy
- Inconvenient

A more sophisticated alternative is *type reconstruction*, aka *type inference*.
Type Reconstruction

Type reconstruction “discovers” a valid type for programs, eliminating the need for type annotations.

To begin, we add type variables to our language of types:

\[
\begin{align*}
 t & \in Tyvar \\
 \tau & ::= t \mid \text{int} \mid (\tau_1 \ast \cdots \ast \tau_n) \rightarrow \tau
\end{align*}
\]

Type judgements are defined as before.
Type Deductions (no type annotations)

\[
\begin{align*}
\text{INT} & \quad \text{VAR} & \quad \text{PLUS} \\
\Gamma(n) = \tau & \quad \Gamma \vdash x : \tau & \quad \Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int} \\
\Gamma \vdash n : \text{int} & \quad \Gamma \vdash x : \tau & \quad \Gamma \vdash e_1 + e_2 : \text{int}
\end{align*}
\]

\[
\begin{align*}
\text{MINUS} \\
\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int} \\
\Gamma \vdash e_1 - e_2 : \text{int}
\end{align*}
\]

\[
\begin{align*}
\text{APP} \\
\Gamma \vdash e : (\tau_1 \cdots \tau_n) \rightarrow \tau \quad \Gamma \vdash e_1 : \tau_1 \quad \cdots \quad \Gamma \vdash e_n : \tau_n \\
\Gamma \vdash e(e_1, \ldots, e_n) : \tau
\end{align*}
\]

\[
\begin{align*}
\text{FUN} \\
\Gamma ; x_1 : \tau_1 ; \ldots ; x_n : \tau_n \vdash e_1 : \tau' \quad \Gamma ; f : (x_1 \cdots x_n) \rightarrow \tau' \vdash e_2 : \tau \\
\Gamma \vdash \text{let } f(x_1, \ldots, \tau_n) = e_1 \text{ in } e_2 : \tau
\end{align*}
\]
Type Reconstruction Algorithm

No longer trivial! Note that judgements are not deterministic (how to “guess” function parameter types?)

Too complicated to give details; intuition:

- Recursively descend into expressions, assign type variable t to parameters in environment
- At variable use point, collect type equation expressing constraint imposed by use:

 $x : t \quad x + 1 \quad t = \text{int}$

- After collecting all such equations in a set E, use unification to solve equations
- Solution is a substitution that makes equations true, use to generate inferred types
Other Extensions

Type systems can get still fancier:

- **Polymorphism**— allows program objects to assume multiple types, e.g. stacks which are abstract wrt their contents

- **Subtyping**— allows program objects to assume “supertypes”, e.g. int can be float, OO objects can assume types of superclass
 - Note: *not* the same as coercion

What’s the point?
Conservative Approximations

Type systems can only be so precise: some operationally safe programs rejected:

\[
\text{if } b \text{ then 1 else true}
\]

Type systems are a conservative approximations of run-time behavior: extensions relax conservatism.

Trick of type analysis design: be as flexible as possible, without making analysis impractical.
New Horizons

Type theorists are also seeking to use types for other applications:

- Statically enforce PL security
 - Type safety can be extended to languages with *access control* features

- Type-directed compiler optimizations
 - If type of objects are known, precise space bounds can be allotted
 - Types usually discarded after parse-tree analysis, but...
 - Types-in-compilation research maintains type information throughout compiler transformations

- Applications in natural language processing

- Theorem provers

- ...