Syntactic Type Soundness for HM(X)

Christian Skalka
The Johns Hopkins University

François Pottier
INRIA Rocquencourt
The system $\text{HM}(X)$

The system $\text{HM}(X)$ is a constraint based type framework:

- Sulzmann, PhD thesis 2000
- Odersky, Sulzmann and Wehr, TOPAS 1999, vol. 5 no. 1

The framework provides a type system for functional core that may be instantiated with specialized constraint systems for particular applications:

- proven sound with respect to denotational semantics
- semi-syntactic soundness proof by Pottier, Res. Report 4150, INRIA
 - not purely syntactic; no subject reduction
The system HM(\(X\))

Principal contribution:

- *purely syntactic* result fills a gap in the literature
 - obtained via standard techniques

Other (minor) contributions include:

- addition of *state* to the core language
- addition of *recursive binding mechanism* to core language
- more *direct axiomatization* of *constraint systems*

NB: we focus on *logical* type system, not inference
The HM(X) language

The HM(X) framework provides a core functional calculus:

- functional abstractions \(\text{fix } z.\lambda x.e \), where \(z \) binds to \(\text{fix } z.\lambda x.e \) in \(e \)
- standard reference operations \(\text{ref} \), \(! \) and \(:= \)
- let expressions \(\text{let } x = v \text{ in } e \); note values restriction to ensure safe interaction of state and polymorphism
- functional constants \(c \in Const \)
 - The set \(Const \) is defined in instantiations
Semantics of $\text{HM}(X)$

The behavior of $\text{HM}(X)$ is defined via an operational semantics, a reduction relation \rightarrow on configurations e/ς:

- \textit{stores} ς are partial mappings from locations l to values v
- reduction rule for applications: $(\text{fix } z. \lambda x. e) v/\varsigma \rightarrow e[v/x][\text{fix } z. \lambda x. e/z]/\varsigma$
- reduction rule for functional constants: $c v/\varsigma \rightarrow \delta(c, v)/\varsigma$
 - The function δ is \textit{defined in instantiations}
- other reduction rules are standard
The HM(X) type and constraint language

The HM(X) framework provides a basic language of types:

$$\tau ::= \alpha | \tau \rightarrow \tau | \tau \text{ ref}$$

constraints:

$$C ::= \text{true} | \tau = \tau | \tau \leq \tau | C \land C | \exists \alpha. C$$

and constrained polymorphic type schemes:

$$\sigma ::= \forall \alpha[C]. \tau$$

Any instance of HM(X):

- **extends** the language of types and constraints with specialized terms
- **defines initial type bindings** Δ for constants in $Const$
HM(\(X\)) type judgment rules (highlights)

\[\text{SUB} \]
\[
\frac{\vdash e : \tau \quad C \vdash \tau \leq \tau'}{C, \Gamma \vdash e : \tau'}
\]

\[\text{CONST} \]
\[
\frac{\vdash c : \Delta(c)}{C, \Gamma \vdash c : \Delta(c)}
\]

\[\text{LET} \]
\[
\frac{C, \Gamma \vdash e_1 : \sigma \quad C, (\Gamma ; x : \sigma) \vdash e_2 : \tau}{C, \Gamma \vdash \text{let} \ x = e_1 \ \text{in} \ e_2 : \tau}
\]

\[\text{APP} \]
\[
\frac{C, \Gamma \vdash e_1 : \tau' \rightarrow \tau \quad C, \Gamma \vdash e_2 : \tau'}{C, \Gamma \vdash e_1 \ e_2 : \tau}
\]

\[\text{\forall ELIM} \]
\[
\frac{C, \Gamma \vdash e : \forall \bar{\alpha}[D].\tau' \quad C \vdash [\tau/\bar{\alpha}]D}{C, \Gamma \vdash e : [\tau/\bar{\alpha}]\tau'}
\]
Interpretation of constraints

We interpret constraints via *assignments* \(\rho \), which map type variables to *monotypes* (variable-free types):

- a *model* \((T, \leq)\) is a partially ordered set of monotypes \(T\), satisfying the usual subtyping properties
- a *standard interpretation* consists of an extension of assignments to arbitrary types, and a *constraint satisfaction relation* \(\rho \vdash C \):

 \[
 \rho \vdash \tau_1 \leq \tau_2 \iff \rho(\tau_1) \leq \rho(\tau_2) \\
 \rho \vdash C_1 \land C_2 \iff (\rho \vdash C_1) \land (\rho \vdash C_2) \\
 \vdots
 \]

- we write \(C \vdash C' \) iff for all \(\rho \), if \(\rho \vdash C \) then \(\rho \vdash C' \)

Any instantiation of *must specify* a model and standard interpretation.
The meaning of HM(X) type soundness

Our type soundness result shows that any instance of HM(X) automatically enjoys type soundness in the framework.

Saves significant proof effort! Soundness cases for constants in Const must still be proven, the δ-typability condition:

- for every constant c and closed value v, if $C, \Gamma \vdash c : \tau_1 \rightarrow \tau_2$ and $C, \Gamma \vdash v : \tau_1$ hold, then $\delta(c, v)$ is defined and $C, \Gamma \vdash \delta(c, v) : \tau_2$ holds

Trickiest bits of syntactic type soundness are taken care of by our result.
Instance of $\text{HM}(X)$

To sum up, an instance of $\text{HM}(X)$ is defined by:

- an extension of the type and constraint language, together with a standard interpretation
- a particular choice of the set of constants Const, together with functions δ and Δ, meeting the δ-typability condition

Any instance of $\text{HM}(X)$ enjoys syntactic type soundness.
Type soundness: definitions

Given the following standard definition:

Definition 1 \(e/\emptyset \rightarrow^* e'/\varsigma' \), where \(e'/\varsigma' \) is irreducible but \(e' \) is not a value, then \(e \) is said to go wrong.

Our aim is to prove the following result:

Theorem 1 (Type Safety) Let \(e \) be an expression in an instance of \(\text{HM}(X) \); then if \(e \) is closed and well-typed, then \(e \) does not go wrong.

Accomplished by proving *subject reduction*.
The proof

To obtain subject reduction, we prove a number of preliminary results.

The first involves type substitutions φ, asserting that substitution preserves type derivations:

Lemma 1 (Type Instantiation) *If there exists a derivation of $C, \Gamma \vdash e : \sigma$, then there exists a derivation of $\varphi(C), \varphi(\Gamma) \vdash e : \varphi(\sigma)$ with the same structure.*

Proof: By induction on the derivation of $C, \Gamma \vdash e : \sigma$.
The proof: normalization

The next step in our proof is normalization, which will allow us to consider canonical, syntax-directed derivations in subject reduction.

We begin by showing that non-syntax directed rules can be “collapsed”:

Lemma 2 Any two consecutive instances of \forall Intro and \forall Elim may be suppressed.

Proof: By type instantiation Lemma.

Lemma 3 Any two consecutive instances of SUB may be collapsed into one.

Proof: By transitivity of \leq.
The proof: normalization

Since the previous Lemmas demonstrate that non-syntax-directed rules may be collapsed, we are able to easily prove our normalization result:

Lemma 4 (Normalization) If \(C, \Gamma \vdash e : \tau \) holds, then it must follow by \(\text{SUB} \) from a judgement \(\mathcal{J} \) such that \(\mathcal{J} \) is an instance of a syntax-directed rule corresponding to the form of \(e \).

Proof: By Lemmas 2 and 3.
The proof: value substitution

Following standard methods, the tricky application and let cases of subject reduction are handled by an auxiliary substitution Lemma:

Lemma 5 (Substitution) If $C, \Gamma; x : \sigma' \vdash e : \sigma$ and $C, \Gamma \vdash v : \sigma'$ then $C, \Gamma \vdash e[v/x] : \sigma$.

Proof: By induction on the derivation of $C, \Gamma; x : \sigma' \vdash e : \sigma$.
The proof: subject reduction

As a prelude to subject reduction, we extend type judgements to configurations:

\[
\text{CONFIG} \quad C, \Gamma \vdash e : \tau \\
\forall l \in \text{dom}(\Gamma) \quad C, \Gamma \vdash \varsigma(l) : \Gamma(l) \\
\quad \frac{}{C, \Gamma \vdash e/\varsigma : \tau}
\]

Our subject reduction result is then stated as follows:

Theorem 2 (Subject Reduction) If \(C, \Gamma \vdash e_1/\varsigma_1 : \tau \) is derivable and \(e_1/\varsigma_1 \rightarrow e_2/\varsigma_2 \), then, for some \(\Gamma' \) which extends \(\Gamma \) with bindings for new memory locations, \(C, \Gamma' \vdash e_2/\varsigma_2 : \tau \) is derivable.
The proof: subject reduction

Proof: By normalization Lemma and case analysis on the reduction: $e_1/\varsigma_1 \rightarrow e_2/\varsigma_2$

- The case $e_1 = cv$ follows by δ-typability.
- The cases $e_1 = (\text{fix } z. \lambda x. e) v$ and let $x = v$ in e follow by substitution Lemma.
- Other cases follow by construction.
The proof: progress

To make the final step to type safety, we prove a stronger progress result:

Lemma 6 (Progress) *If a closed configuration* e/ζ *is well-typed and irreducible, then* e *is a value.*

Proof: By contradiction, via an examination of cases in which e/ζ is irreducible and is *not* a value:

- We demonstrate that such configurations are not well-typed
These results enable us to prove type safety in a straightforward manner:

Theorem 1 (Type Safety) Let e be an expression in an instance of $\text{HM}(X)$; then if e is closed and well-typed, then e does not go wrong.

Proof: By induction on the length of the reduction sequence, subject reduction, and progress:

- *subject reduction* shows that reduction preserves well-typedness
- *progress* shows that no configuration in reduction sequence can be semantically ill-defined
Conclusion

HM(X) is a constraint based type framework, useful for easy prototyping of novel languages and type systems:

- framework may be instantiated:
 - with new language constants and reduction rules
 - with specialized type language for new constants

- instantiations automatically enjoy **syntactic type soundness** in the framework:
 - instantiations must satisfy basic properties
 - our result first purely syntactic soundess result for HM(X)

http://www.cs.jhu.edu/~ces/work.html