CS206: Evolutionary Robotics

Lectures: 209 Votey, 8:30-9:45am Tues/Thurs

Instructor: Josh Bongard (josh.bongard@uvm.edu)
205 Farrell Hall
Office Hours: 10:00am-11:00am Tues/Thurs

Teaching Assistant for this class: Karol Zieba (kzieba@uvm.edu), 347 Votey
Teaching Assistant Office Hours: Mon 4-5pm; Thurs, 4-5pm

Description: This course will explore the automated design of autonomous machines using evolutionary algorithms. The course will cover relevant topics in evolutionary computation, artificial neural networks, robotics, biomechanics, and simulation. Students will conduct a major programming project that will span the course and thus provide hands-on experience with the topics covered. Undergraduates will use their developed system to perform a pre-specified evolutionary robotics experiment; graduate students will formulate their own research hypothesis and use their system to test that hypothesis.

Additional readings from the current literature will be provided.

Prerequisites: Junior standing and programming experience, or instructor permission.

Grading Scheme: The late policy for this class is as follows: material one day late, 25% deduction; two days late, 50% deduction; three days late, 100% reduction.

Ten programming assignments 10 × 4 = 40%
Over the span of eight weeks, each student will gradually build a software system that allows them to conduct an evolutionary robotics experiment. This system will be composed of 10 software modules. Each programming assignment will involve implementing one of these modules. Note: Because the modules will form a final, integrated system, if you fail to hand in one module, you must hand it in along with the new module the following week.

Midterm: 25%

Final project 30%
Over the final six weeks of the semester, each student will use their software system to perform an evolutionary robotics experiment. A written report describing the experiment will be handed in at the end of the semester, and an oral presentation will be given during the exam period. Details about the final project will be available here.

Participation: 5%
Class participation counts toward your final grade. Students are permitted to miss up to and including three classes without being required to provide justification. Missed classes beyond that must be cleared with the instructor.
Course Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>TAR</th>
<th>Reading</th>
<th>Assignment Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tu/01/13</td>
<td>L1: Course Logistics; Why Robots?</td>
<td>TAR</td>
<td></td>
<td>[Assn1 assigned]</td>
</tr>
<tr>
<td>Th/01/15</td>
<td>L2: A Short History of Artificial Intelligence</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/01/20</td>
<td>L3: Embodied Cognition</td>
<td>TAR</td>
<td>Reading</td>
<td>[Assn1 due] [Assn2+assn3 assigned]</td>
</tr>
<tr>
<td>Th/01/22</td>
<td>L4: Artificial Neural Networks</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/01/27</td>
<td>L5: Evolutionary Algorithms</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/02/03</td>
<td>L6: Physical Simulation</td>
<td>TAR</td>
<td></td>
<td>[Assignments 2 and 3 due] [Assignment 4 assigned]</td>
</tr>
<tr>
<td>Th/01/29</td>
<td>The Italian Approach; The English Approach</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/02/03</td>
<td>The French Approach</td>
<td>TAR</td>
<td></td>
<td>[Assn 4 due] [Assn 5 assigned]</td>
</tr>
<tr>
<td>Th/02/05</td>
<td>Continuous Time Recurrent Neural Networks (CTRNNs)</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/02/10</td>
<td>Minimal Cognition</td>
<td>TAR</td>
<td>Reading</td>
<td>[Assn5 due] [Assn6 assigned]</td>
</tr>
<tr>
<td>Th/02/12</td>
<td>Minimal Cognition contd.</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/02/17</td>
<td>Active Categorical Perception</td>
<td>TAR</td>
<td></td>
<td>[Assn6 due] [Assn7 & Assn8 assigned]</td>
</tr>
<tr>
<td>Th/02/19</td>
<td>Legged Locomotion</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/02/24</td>
<td>Bipedal Locomotion</td>
<td>TAR</td>
<td></td>
<td>[Assns 7 & 8 due] [Assn9 assigned]</td>
</tr>
<tr>
<td>Th/02/26</td>
<td>Crowdsourcing Robotics [Guest lecturer: Mark Wagy]</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo/03/02-Fr/03/06</td>
<td>Spring Recess</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/03/10</td>
<td>Modularity</td>
<td>TAR</td>
<td></td>
<td>[Assn 9 due] [Assn10 assigned]</td>
</tr>
<tr>
<td>Th/03/12</td>
<td>The Genotype-to-Phenotype Map</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/03/17</td>
<td>Midterm (Assn10 due)</td>
<td>TAR</td>
<td></td>
<td>[Past midterms: 2010, 2014]</td>
</tr>
<tr>
<td>Th/03/19</td>
<td>The GOLEM Project</td>
<td>TAR</td>
<td></td>
<td>[Final project assigned]</td>
</tr>
<tr>
<td>Tu/03/24</td>
<td>Resilient Machines</td>
<td>TAR</td>
<td></td>
<td>[Final project weekly report 1 due.]</td>
</tr>
<tr>
<td>Th/03/26</td>
<td>Bullet Physics Tutorial: Karol Zieba [Final project weekly report 1 due.]</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu/03/31</td>
<td>The Radical Envelope-of-Noise Hypothesis</td>
<td>TAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th/04/02</td>
<td>Transferability</td>
<td>TAR</td>
<td></td>
<td>[Midterms returned]</td>
</tr>
</tbody>
</table>

The Tools of the Trade

History

The First Years of Evolutionary Robotics
- Tu/02/03: The French Approach [TAR] [Reading] [Assn 4 due] [Assn 5 assigned]
- Th/02/05: Continuous Time Recurrent Neural Networks (CTRNNs) [TAR] [Reading, pp. 1-4.]
- Tu/02/10: Minimal Cognition [TAR] [Reading] [Assn5 due] [Assn6 assigned]
- Th/02/12: Minimal Cognition contd.
- Tu/02/17: Active Categorical Perception [TAR] [Reading] [Assn6 due] [Assn7 & Assn8 assigned]

Legged Locomotion
- Th/02/19: Legged Locomotion [TAR] [Reading.]
- Tu/02/24: Bipedal Locomotion [TAR] [Reading.] [Assns 7 & 8 due] [Assn9 assigned]

Challenges
- Tu/03/10: Modularity [TAR] [Reading.]

Midterm (Assn10 due) [Midterm instructions] [Past midterms: 2010, 2014]

Crossing the Reality Gap
- Th/03/19: The GOLEM Project [TAR] [Reading1.] [Reading2.] [Final project assigned.]
- Tu/03/24: Resilient Machines [TAR] [Reading1.] [Reading2.]
- Th/03/26: Bullet Physics Tutorial: Karol Zieba [Final project weekly report 1 due.]
- Tu/03/31: The Radical Envelope-of-Noise Hypothesis [TAR] [Reading.]
- Th/04/02: Transferability [TAR] [Reading.] [Midterms returned]
Collective Intelligence

[Tu/04/07] Swarm Robotics [TAR] [Reading]
[Th/04/09] The Evolution of Communication [TAR] [Reading]

Evolving Cognitive Architectures

[Tu/04/14] NEAT/HyperNEAT [TAR] [Reading1] [Reading2]

Evolving Robot Bodies and Brains

[Th/04/16] The First Attempt: Karl Sims [TAR] [Reading]
[Th/04/16] LSystem Robots [TAR] [Reading]
[Tu/04/21] Soft Robots [TAR] [Reading]
[Th/04/23] Why Evolve Robot Morphologies? [TAR] [Reading]

Final Project Presentations

[Th/05/07] Exam period (7:30am - 10:15am): final project oral presentations

• 01. Bennett Siegel 07:30 - 07:35am
• 02. Jeremy Valance 07:35 - 07:40am
• 03. Lindsey Donovan 07:40 - 07:45am
• 04. Andrew Burger 07:45 - 07:50am
• 05. Carlos Garcia 07:50 - 07:55am
• **Ten minute break**
• 06. Chris Hutchinson 08:05 - 08:10am
• 07. Ian Benson 08:10 - 08:15am
• 08. Zachary Chay-Dolan 08:15 - 08:20am
• 09. Jonathon Cahoon 08:20 - 08:25am
• 10. Austin Kincaid 08:25 - 08:30am
• **Ten minute break**
• 11. Michael Fritz 08:40 - 08:45am
• 12. Tayler Brukilacchio 08:45 - 08:50am
• 13. Canaan McKenzie 08:50 - 08:55am
• 14. David Kinney 08:55 - 09:00am
• 15. Evan Metayer 09:00 - 09:05am
• **Ten minute break**
• 16. Andy Reagan 09:15 - 09:20am
• 17. Julianna Roen 09:20 - 09:25am
• 18. Collin Cappelle 09:25 - 09:30am
• 19. Jeff Meyer-Lorentson 09:30 - 09:35am
• 20. Eric Newbury 09:35 - 09:40am
• **Ten minute break**
• 21. Guillaume Sparrow-Peppin 09:50 - 09:55am
• 22. Joey Anetsberger 09:55 - 10:00am
• 23. Ari Larson 10:00 - 10:05am
• 24. Owen Marshall 10:05 - 10:10am
• 25. Sarah Clarke 10:10 - 10:15am