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ABSTRACT 
We describe a new general algorithm for the automated 

design, analysis and repair of nonlinear physical systems. The 
process iterates a two-phase exploration-estimation cycle. The 
exploratory phase seeks a new improvement or test to perform 
to the system based on some initial internal model. The 
estimation phase performs the suggested operation and 
observes the outcomes; it then improves the internal model so 
as to explain all observations so far. This process relies on very 
few, targeted, and carefully planned interactions with the 
physical systems. We describe an implementation of this 
method using two evolutionary algorithms, where the 
exploratory phase uses a simulator to evolve improvements or 
tests, and the estimation phase uses observations to evolve the 
simulator itself. We demonstrate this algorithm for analysis, 
design and repair of electromechanical systems. 

 
INTRODUCTION 

A common challenge of many synthesis and analysis 
problems is the need to produce a good solution while doing a 
minimal number of physical trials. In many design problems, 
an engineer must plan a solution based on some predictive 
abstraction of the problem, and only then implement and try the 
solution in reality. If the solution succeeds, the goal has been 
achieved; but if the solution is unsatisfactory, additional design 
iterations are required. Iterations involving a physical test are 
often costly and slow, and great effort is made to reduce the 
number of iterations by using increasingly higher-fidelity 
abstractions.  

Conversely, in many analysis problems, an analyst tries to 
reverse-engineer a physical system by creating a model 
compatible with some observation of its behavior. The model is 
then used to make predictions about the system, and these 
predictions are then tested. If the predictions are confirmed, the 

goal has been achieved; but if the predictions are incorrect, 
additional analysis iterations are needed. Each iteration 
involving testing of the physical system is often costly, slow, 
and possibly disruptive to the analyzed system, and great effort 
is made to reduce the number of physical interactions by using 
carefully planned and targeted tests. 

Examples for both these cases are abundant: The recent 
difficulties with JPL’s Mars rovers is a dramatic example; both 
robots suffered different, unanticipated partial failures [1]. 
Automatic recovery involving both analysis and redesign is 
most acute in such instances, where human operators cannot 
manually repair or provide compensation for damage or failure. 
Similarly, excessive testing of many complex systems, 
especially those involving mechanical components, is costly, 
slow and may lead to wear and degradation.  

Human engineers reduce the need for physical 
experimentation (‘trial and error’) by creating an abstraction of 
the physical system. This abstraction – be it an analytical 
model, a computational simulation, or a mental insight – is 
used to predict properties and capture knowledge about the 
system. Only design improvements that are expected to be the 
most successful, or tests that are predicted to yield the most 
relevant new information, are actually performed in reality. It is 
this kind of abstraction that must be a component of any 
effective design automation algorithm that deals with a physical 
system. 

The analysis and synthesis problems are not independent: 
For effective design, also an analysis and understanding of a 
system is required; for effective analysis, also a careful design 
of experiments is required; and for the repair of a system, both 
analysis for diagnostic and redesign for recovery are required. 
It is thus not surprising that an algorithm that performs either of 
these functions will have to do both, and this is what we 
present here. 
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 THE EXPLORATION-ESTIMATION ALGORITHM 
The algorithm we present iterates a two-phase exploration-

estimation cycle. The exploratory phase seeks a new design 
improvement or test to perform on the system based on some 
initial internal model. The estimation phase performs the 
suggested operation and observes the outcomes; it then 
improves the internal model so as to explain all observations so 
far. This algorithm can be viewed as an antagonistic co-
evolution of models and tests, where models are evolved to 
explain tests, and tests are evolved to create disagreement 
among model predictions. 

Terminology 
A system is defined as a ‘box’ with inputs and outputs. 

We assume the system is typically nonlinear and holds internal 
state. For example, the system may be a finite state machine or 
a physical machine. The system may include a robot, its 
environment and its controller; in this case the inputs are 
system specifications, and the output is the observable behavior 
of the robot. Note that this is different from the conventional 
control-theoretic view that separates the system from the 
control. Here the system includes both the machine and control, 
and the design algorithm is outside the system, trying to 
provide inputs to modify the system (the morphology and/or 
the control) so as to get the target behavior (for synthesis) or 
learn about the system (analysis).  

A definition of a system must include a representation 
language to represent the space of systems, the space of inputs, 
and the space of outputs, and operators to search these spaces. 
We also need a distance metric to compare inputs to inputs, 
outputs to outputs, and systems to systems. The metric should 
be zero for identical arguments and positive for non-identical 

arguments, and should obey the triangle inequality. The 
algorithm uses multiple system models, and each is referred to 
as a hypothesis. For design or repair, an external target output 
should also be provided.  

The following components are required: 

• A representation, search operators and similarity metric for 
systems 

• A representation and search operators for inputs 
• A similarity metric for outputs 
• For design or repair, a target output 

Algorithm outline 
1. Initialization:  

a. Define a set of initial models (hypotheses) of the 
system. They can be blank, random, or seeded with 
some prior knowledge. 

2. Exploration phase 
a. Search for an input that creates the most variation 

among the outputs of the current set of model 
hypotheses.  

b. For design or repair, search for the input that yields 
the output that is closest to the target output on the 
current set of model hypotheses.  

Note: For design/repair, the above two goals must be 
alternated, staggered, or combined by weighting or some 
other multi-objective search technique. 

3. Estimation phase 
a. Test the physical system by applying the inputs and 

measuring the outputs. This input-output set is stored. 
b. Search the model space for models that are maximally 

consistent with all stored input-output sets. Multiple, 
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Figure 1. Exploration-estimation Evolutionary Algorithm (EA) for recovering functionality. (a) A conventional EA recovers functionality by 
extensive testing on the physical robot (b) Two-phase exploration-estimation EA. Steps that take place on the physical robot are crosshatched. 
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different candidate hypotheses are required. 
4. Termination 

The exploration-estimation cycles are repeated until one of 
these conditions is met: 
a. The estimation phase is unable to produce a model 

consistent with all the accumulated observations. In 
this case the algorithm failed, but at least avoids 
unnecessary blind trials 

b. For synthesis: The target output has been achieved on 
the physical system. 

c. For analysis: The estimation phase repeatedly 
produces the same set of model hypotheses for a 
number of cycles in a row, or the exploration phase is 
unable to find an input that causes variation in the 
outputs of the current model hypotheses. The 
hypotheses may be identical, indicating there is one 
solution; or different, indicating that some aspect of 
the system is unobservable and several solutions are 
possible but cannot be disambiguated by the inputs. 

5. Cross validation (for analysis) 
Upon successful termination in analysis (4.c), it is 
necessary to validate that the system was reliably inferred. 
This may be done by generating random or arbitrary inputs 
and testing the outputs against prediction of the models. 
Successful predictions provide a positive confirmation; 
unsuccessful predictions should be included in the test data 
and the estimation-exploration cycle resumed.  

Modes of failure or non-convergence 
If the algorithm fails, there are a number of possible 

causes: 
• The physical test was not carried out properly (the 

inputs were not set correctly or the measurements of 
the outputs were incorrect) 

• The search process in the estimation phase is not able 
to find the best models (cause depends on the search 
technique used, e.g. could be stuck in local minima) 

• The system or necessary inputs are outside the space 
spanned by the representation language.  

• The system behaves inconsistently. The space of 
systems may be broadened to include additional, 
possibly non-deterministic elements. 

If the algorithm continues running but does seem to make 
progress (i.e., is slow to converge), there are a number of 
possible causes 

• The search process in the estimation phase does not 
produce a diverse enough set of hypothesis (lack of 
diversity). In this case the inputs generated in the 
exploration stage do not produce much information 
beyond what is already known and the algorithm 
cannot make progress. 

• The search process in the exploration phase is not able 
to find the best inputs (cause depends on the search 
technique used) 

Implementation using evolutionary computation 
The exploration-estimation algorithm can be implemented 

using a variety of search algorithms. Particularly appealing is 
the use of evolutionary search techniques as they are inherently 
population-based and can produce the diversity of solutions 
required for this algorithm. However, any other search 
technique can be used as long as it is capable of producing 
multiple satisfactory solutions for the problem domain. For 
example, a parallel hill-climber, parallel simulated-annealer, or 
heuristic search like A* can be used. 

Figure 1 shows an example of applying the exploration-
estimation algorithm to the design and analysis of a robot 
controller, where the physical robot’s morphology, 
environment, or damage (if any) are unknown. 

APPLICATION TO ROBOTICS 
We have applied the presented algorithm to the automated 

design, analysis and repair of robotic systems. We focus here 
on evolutionary robotics, a design automation technique that 
has been used for the open-ended design of robot controllers 
[7,9] and morphologies [10,8,11,12,13]. 

Many of the current evolutionary design algorithms 
assume an accurate simulator exists for the deign space being 
searched. However this raises a major challenge concerning the 
transferal of evolved machines from simulation to reality, or 
‘crossing the reality gap’ [2]. Alternatively, some evolutionary 
design processes work by directly modifying the physical 
system [3,4,5] or evolving first in simulation followed by 
further adaptation in reality [6]. This approach requires 
extensive amount of physical testing (on the order of 1,000-
10,000 trials) that is prohibitive for most physical systems, 
especially those involving mechanical components. 

The following sections describe a number of experiments 
in which various instantiations of the presented algorithm have 
been applied for the analysis, redesign and repair of a legged 
robot. In these experiments the ‘physical’ robot is also 
simulated, but with different parameters, failures and 
environmental conditions unknown to the internal simulator. 
We first describe the robotic platform itself, and then provide 
details about each of the experiments and results. 

The Robot 
In this work a quadrupedal robot was simulated and used 

to test the algorithm (Figure 2). The simulator works in unison 
with a ‘physical’ robot, which in this case is also simulated 
[14]. The simulated robot is composed of nine three-
dimensional objects, connected with eight one-degree of 
freedom rotational joints. The joints are motorized, and can 
rotate through [−π/4, π/4] radians. The robot is shown in Figure 
2a. The robot also has four binary touch sensors, and four angle 
sensors that return values in [−1,1] commensurate with the 
angle of the joint to which they are attached. The robot is 
controlled by a neural network, which receives sensor data 
from the robot at the beginning of each time step of the 
simulation into its input layer, propagates those signals to a 
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hidden layer containing three hidden neurons, and finally 
propagates the signals to an output layer. The input layer is 
fully connected to the hidden layer; each neuron at the hidden 
layer is fully connected to the output layer, as well as recurrent 
connections to itself and the other hidden neurons. There are 
also two bias neurons, one which is fully connected to the 
hidden layer, and another which is fully connected to the output 
layer. The neural network architecture is shown in Figure 2b. 
Two types of sensors are used: touch sensors and angle sensors: 
the touch sensors are binary, and indicate whether the object 
containing them is in contact with the ground plane or not; the 
angle sensors return a value commensurate with the flex or 
extension of the joint to which they are attached. Neuron values 
and synaptic weights are scaled or lie in the range [−1.00,1.00]. 
A threshold activation function is applied at the neurons. 

 
Figure 2. The quadrupedal test robot: (a) The morphology of the 
robot, including the distribution of its four touch sensors (T1-T4), four 
angle sensors (A1-A4), and eight motorized joints (M1-M8), and  (b) 
The neural network controller of the robot, which connects the eight 
sensors to the eight motors via a single hidden layer, and an additional
two bias neurons (B1-B2). 

Application of the algorithm to robot analysis 
The objective of this experiment is to recover the physical 

properties of the physical robot morphology, using minimum 
number of physical experiments. This is similar to a system-
identification task, but applied to a highly nonlinear system. 

We implemented the exploration-estimation algorithm with 
the following specific implementation choices: 
1. System: The quadrupedal robot, including both 

morphology and control as shown in Figure 2. System 
hypothesis representation: The genomes of the 
estimation phase encoded some aspects of the simulated 
robot’s morphology that are thought to differ between the 
simulated and physical robot. In this experiment they 
encoded the masses of the robot’s body parts (in 
kilograms) and sensor time lags (in simulator time steps). 
System search operators: Conventional mutation and 
crossover operators of evolutionary search. System 
similarity metric: The length of time that the sensor 
signals from the simulated and target robot stay correlated: 
behaviors that diverge early indicate a poorer simulation 
compared to signals that stay correlated longer (for a more 
detailed description of this metric, see [15,17,18]). 

2. Inputs: All synaptic weights of the neural controller. 
Inputs search operators: Conventional mutation and 
crossover operators of evolutionary search. 

3. Outputs: The behavior of the robot, specifically the time 
series produced by its sensors. Outputs similarity metric: 
Hamming distance between corresponding sensory signals 
during the first 20 time steps of behavior. Since the system 
is highly nonlinear, even very similar behaviors diverge 
rapidly and more elaborate metrics need to be used for 
longer-term comparisons. Target outputs: not needed 
here, since this is an analysis experiment. 

 
We used a standard genetic algorithm to perform both the 

exploration and estimation phases, with a population size of 
100 and 30 generations per cycle. In the estimation stage, 
system hypotheses were evolved. In the exploratory phase, new 
tests were evolved. We compare this to a control experiment 

that used feedback from a single test but performed the same 
number of evaluations. 

Results Fifty independent runs of the algorithm were conducted 
against the target robot outlined in Table I. Figure 3 shows the 
50 series of 20 best simulator modifications output after each 
pass through the estimation phase.  

Table I: Differences between the simulated and target robots 
Body Part 
or Sensor 

Simulated 
Body Part 

Target 
Body Part 

Simulated 
Sensor 

Target 
Sensor 

1 5.0 (kg) 6.5 (kg) 0 (t) 15 (t) 
2 1.0 2.4 0 7 
3 1.0 2.0 0 19 
4 1.0 3.0 0 4 
5 1.0 2.7 0 10 
6 1.0 1.9 0 5 
7 1.0 2.8 0 18 
8 1.0 2.7 0 16 
9 1.0 2.4   
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Figure 3. The repeated convergence during the 50 independent 
runs to the correct morphological properties of the target robot. 
The circles indicate the specific morphological difference between the 
default simulated robot and the target robot (see Table I). The top row 
indicates the convergence of the algorithm toward the actual mass 
distribution of the target robot. The bottom row indicates the 
convergence toward the actual time lags of the eight sensors. 
 
One of the runs was selected at random, and the gait of the 
simulated robot was compared against the gait of the target 
robot, when both used the same evolved controller. Figure 4a 
indicates the change in behaviors when the first evolved 
controller was transferred, and Figure 4b shows the behavior 
change when the 20th evolved controller was transferred, 
during the last iteration through the algorithm's cycle. Finally, 
for each pass through the exploration phase, the distance 
traveled by the simulated robot was averaged over all the 50 
runs. Similarly, the distance traveled by the target robot using 
the same controller was averaged over the 50 runs. The results 
are shown in Figure 5. 
 

 
Figure 4. Behavior recovery after controller transferal. After the 
first pass through the exploration phase, the best evolved controller 
was used by the default simulated robot. The trajectory of its center of 
mass is given by the thin line in a. The same controller was then 
supplied to the target robot, and the resulting trajectory of its motion is 
given by the thick line in a. The movement of the simulated robot in 
the updated simulator after the 20th pass through the exploration phase 
(using the new best evolved controller) is given by the thin line in b. 
The motion of the target robot using the same controller is given by 
the thick line in b. The horizontal axis indicates forward distance, and 
the vertical axis indicates height (both are in meters). 
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Figure 3 makes clear that for all 50 runs, the algorithm was 

better able to infer the time lags of the eight sensors than the 
mass increases of the nine body parts. This is not surprising in 
that the sensors themselves provide feedback about the robot. 
In other words, the algorithm automatically, and after only a 
few target trials, deduces the correct time lags of the target 
robot's sensors, but is less successful at indirectly inferring the 
masses of the body parts using the sensor data. 

Convergence toward the correct mass distribution, 
especially for body parts 1, 2, 4 and 8 can be observed. Even 
with an approximate description of the robot's mass 

distribution, the simulator is improved enough to allow smooth 
transfer of controllers from simulation to the target robot. 
Using the default, approximate simulation, there is a complete 
failure of transferal, as indicated by Figure 4a: the target robot 
simply moves randomly, and achieves no appreciable forward 
locomotion. 

 

 
Figure 5. Average transferal success after each target trial. The 
light gray bars indicate the average distance traveled by the simulated 
robot using the best evolved controller output by that pass through the 
exploration phase, over all 50 runs. The dark gray bars indicate the 
average distance traveled by the target robot using the same controller, 
during each target trial. Error bars indicate two units of standard 
deviation. 
 

After 20 iterations through the algorithm, an improved 
simulator is available to the exploration phase, which evolves a 
controller that allows the simulated robot to move forward, 
although not as far as the original simulated robot (indicated by 
the shorter trajectory in Figure 4b compared to Figure 4a). 
Also, the new gait causes the robot to hop (indicated by the 
large vertical curves of the robot's center of mass in Figure 4b) 
instead of walk (indicated by the steady trajectory of Figure 
4a). In contrast to the first pass, the target robot exhibits very 
similar behavior to the simulated robot when it uses the same 
controller: both travel a similar distance (about 6.5m), and both 
move in the same way (both exhibit a hopping gait that 
produces trajectories with similar frequencies and amplitudes). 

Finally, Figure 5 shows that this improvement in behavior 
transferal success is a general phenomenon. On average, over 
the 50 independent runs, there is a drop by 50% in the distance 
traveled by the target robot, compared to the default simulated 
robot. After about five iterations through the algorithm's cycle 
there is only a statistically insignificant decrease in distance 
traveled between the two robots. Although not shown in Figure 
5, this similar distance is matched in all of the cases viewed by 
a qualitative similarity in gait patterns, as shown for a single 
run in Figure 4b. 

It is useful to stress that the algorithm discovers the correct 
mass distribution without any direct access to information 
about the target robot’s morphology: the morphology is 
determined based solely on returned sensor data. Figure 4 
shows that the algorithm is better at guessing the masses of 
some body parts than others. However even without sensors 
attached directly to the all parts of the body, the algorithm is 
able to guess the morphological properties correctly in many 
cases. 
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Application to robot repair 
The objective of this experiment is to restore operation to a 

damaged robot. There is no direct information about the 
damage that may have occurred, but the functionality must be 
restored by redesigning a controller that is qualitatively 
different than the original controller.  

In order to recover functionality for a damaged robot, the 
exploration-estimation algorithm was used to model the 
damage suffered by a physical robot (which is also simulated in 
our current work). Three hundred independent runs were 
executed, in which the `physical' robot underwent various types 
of damage: failure or sensor or motors; separation of body 
parts; changes in mass distribution; actuated joints become 
jammed; or there is some change in the robot's environment, 
such as a horizontal tilting of the ground plane. Thirty 
independent runs for each of 10 different failure scenarios 
(listed in Table II) were executed. 

 
Table II: Unanticipated scenario cases 

Case Explanation 
1 One motor weakens by 50%. 
2 One body part increases in mass by 200% 
3 One of the entire legs breaks off. 
4 One of the entire legs breaks off, and a sensor fails by 50%. 
5 An angle sensor fails by 50%. 
6 One of the joints jams by 50%. 
7 One of the entire legs breaks off, and one of the joints jams by 

50%. 
8 One of the entire legs breaks off, one of the joints jams by 

50%, and one of the sensors breaks by 50%. 
9 Nothing breaks. 

10 The robots stands on a 30 degree horizontal slope. 
11 One of the hidden neurons fails by 50%. 
12 Two motor neurons output the same value. 
13 A body part decreases in mass by 50%. 

 
The exploratory phase was identical as for that 

described for the robot analysis application; input was a set of 
synaptic weights for the neural network controller. Fitness---
and therefore a good test---was determined as the maximum 
forward distance traveled by the target robot. The system 
hypothesis representation is here a set of morphological, neural 
or environmental modifications that are applied to the 
simulation. Fitness in this case is how well the exploratory 
phase 'breaks' the robot, or modifies the environment, so as to 
approximate the crippled state of the `physical' robot or its 
novel environment. For each of the 30 independent runs, a 
unique set of robot failures or environmental changes were 
instituted; each phase was cycled through 30 times, requiring 
only 30 target trials. Within each phase, an evolutionary 
algorithm containing a population of either 100 sets of synaptic 
weights, or 100 sets of system hypotheses, was run for 30 
generations. 

The progress of a typical run is shown in Figure 6, 
where function recovery is achieved after a correct diagnosis of 
the failure (partial sensor failure) is evolved. The average 
function recovery of the robot for these 10 scenarios, plus three 
scenarios that can not be perfectly approximated by the 

estimation phase, are shown in Figure 7. As can be seen, in 
almost all cases, function is restored to the crippled robot. 

 

 
Figure 6. The repair progress of for unanticipated situation number 
5: one of the angle sensors breaks by 50%. (a) The stepped lines 
indicate the progress of the five passes of the exploration phase. The 
captions indicate the best hypotheses evolved by the four passes 
through the estimation phase. The triangle shows the original fitness 
(distance traveled in meters) of the physical robot. The circle indicates 
distance traveled after experiencing the unanticipated situation. The 
squares indicate the distance traveled by the recovered physical robot 
during each of the four hardware trials. (b-d): Trajectories of the 
physical robot’s motion: (b) before the unanticipated situation; (c) 
after encountering the unanticipated situation; and (d) during the 
fourth hardware trial. 

 

 
Figure 7. The average performance of the presented algorithm for all 
unanticipated situations listed in Table I. The white bars indicate the 
average distance traveled by the ‘physical’ robot before encountering 
the unanticipated situation; the light gray bars after it has encountered 
the situation; and the dark gray bars indicate the distance traveled by 
the ‘physical’ robot during the fourth hardware trial. 
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CONCLUSIONS 
 

We have described a new general algorithm for the 
automated design, analysis and repair of nonlinear physical 
systems. The process iterates a two-phase, co-evolutionary 
estimation-exploration cycle. The exploratory phase seeks a 
new improvement or test to perform to the system based on 
some initial internal model. The estimation phase performs the 
suggested operation and observes the outcomes; it then 
improves the internal model so as to explain all observations so 
far.  

The key advantage of this algorithm is when design, 
analysis or repair must be performed to a physical system under 
uncertainty – where some aspects of the system are unknown 
but extensive physical testing is prohibitive and extensive data 
about the system is not available. In the robot repair 
application, we showed how a complex, nonlinear system 
subject to a compound damage was redesigned to restore 
functionality using only four physical tests – this stands in 
contrast to other approaches that need explicit feedback from 
failure sensors, or perform large amounts of tests on the 
physical systems. 

  The true power of this algorithm, however, lies in its 
generality: we hold that our algorithm can be applied to most 
coupled, non-linear systems. Elsewhere we have applied our 
algorithm to the problem of gene network inference ([16]), and 
reverse engineering of large finite state machines ([19]). Future 
avenues of study will include applying our robot-based 
algorithm to an actual physical robot, as well as generalizing 
the algorithm to a wider range of coupled, non-linear systems. 
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