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ABSTRACT
In the domain of design, there are two ways of viewing the competi-
tiveness of evolved structures: they either improve in some manner
on previous solutions; they produce alternative designs that were
not previously considered; or they achieve both. In this paper we
show that the way in which designs are genetically encoded influ-
ences which alternative structures are discovered, for problems in
which a set of more than one optimal solution exists. The prob-
lem considered is one of the most ancient known to humanity: de-
sign a two-dimensional shape that, when rolled across flat ground,
maintains a constant height. It was not until the late 19th century—
roughly 7000 years after the discovery of the wheel—that Franz
Reuleaux showed that a circle is not the only optimal solution. Here
we demonstrate that artificial evolution repeats this discovery in un-
der one hour.
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1. INTRODUCTION
It is widely believed that the wheel—a circular object that allows

much less friction during transport than dragging—was discovered
in ancient Mesopotamia in the 5th millennium BC. It is possible
that there was an independent discovery of the wheel in China in
2800 BC, but there is less historical evidence supporting this dis-
covery. Despite the overwhelming utility of this structure, many
major civilizations throughout history failed to discover it, includ-
ing those in Sub-saharan Africa, Australia and the Americas1 [11].

The circle is an optimal shape for a wheel because a circle’s ge-
ometric center maintains a constant height when it is rolled over
flat ground. This is desirable for vehicles, in which the axle passes

1Children’s toys from the Incan civilization suggest that that soci-
ety was at least aware of wheel-like shapes, even if they were not
used for utilitarian purposes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

a −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

b −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

c −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

d −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: a: The Reuleaux triangle. b-d: Reuleaux 5-, 7- and
9-polygons, respectively.

through the wheel’s geometric center. However objects can also be
rolled over wheels or cylinders because circles also maintain a con-
stant height: the height of a circle remains constant as it rolls. The
circle is only one of an infinite set of optimal shapes that maintain
a constant height during rolling. These shapes are known as curves
of constant width [5].

The time at which it was realized that the circle is not the only
known curve of constant width is not well known. However the
Reuleaux triangle, named after Franz Reuleaux (1829-1905), a Ger-
man professor of engineering and machine design, is a non-circular
curve of constant width. The Reuleaux triangle was first men-
tioned in 1876 [9] (and reprinted in 1963 [10]), so taking this as
an approximate date of the discovery of non-circular curves of con-
stant width, and the discovery of the first curve of constant width—
the wheel—in the 5th millennium BC, it took humanity roughly
7000 years to discover that there is more than one curve of constant
width. The Reuleaux triangle, along with three other non-circular
curves of constant width, are shown in Figure 1. Pairs of Reuleaux
triangles connected together to serve as smooth rollers are shown in
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Figure 2: a: A pair of rollers constructed from Reuleaux tri-
angles. b: Cart with Reuleaux triangles as wheels. Source:
UNESCO exhibit “Experiencing Mathematics”. Photo: David
W. Henderson.

Figure 2a. Reuleaux polygons can also serve as wheels if their axle
is also made to have the same profile with opposite, compensating
motion. Figure 2b shows a cart with Reuleaux triangles as wheels
and as axles [1].

In this paper we present three genetic algorithms that differ only
in their genetic representation: all of them consistently design curves
of constant width. We will show that several different curves are
discovered, including the circle, but that the method of genetic en-
coding biases which solution is discovered, a well-documented pro-
cess in evolutionary computation (eg. [2], [4]). In the next section
we describe the set of curves of constant width; in section 3 we de-
scribe a methodology for, and results from the evolution of curves
of constant width. In section 4 we provide some concluding re-
marks.

2. CURVES OF CONSTANT WIDTH
For closed convex planar bodies whose boundary is a smooth

curve, there are exactly two parallel tangent lines to the boundary
curve in any given direction. In a physical setting, these lines can
be considered to be flat ground, and a line parallel to the ground
that the body intersects at some point when it rolls through 2π ra-
dians. The width of the curve in a given direction is taken to be
the perpendicular distance between the tangents perpendicular to
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Figure 3: a: A sample of solutions from an initial random pop-
ulation (thick line), with no bias toward symmetric or asym-
metric shapes. The rays indicate the 60 evolved radii; the poly-
gons indicate the resulting convex hulls. The circles indicate the
bounding circle, which is for visual comparison only; it does
not influence fitness. Figures indicate the index of the solution
within the population. b: The tracks left by the height of these
shapes, when they are rolled along a flat surface from0 to π.

that direction. For physical shapes, this definition is simpler: at
any point of rotation, when the shape touches the ground, its width
is taken as the distance from the ground to the shape’s maximum
height.

According to this definition, the circle qualifies as a curve of con-
stant height. However there are also an infinite set of other shapes



Figure 4: The errors of each shape from a single evolutionary
run.

which satisfy these conditions. Rather than giving a formal def-
inition here, we instead provide a constructive definition. Given
some n selected from the infinite set of odd integers {3, 5, 7, . . .},
construct an n-polygon with equal length sides. For each point of
the polygon A, draw an arc connecting the two opposing points B
and C on the far side of the polygon, where the radius of the arc is
|A − C| = |A − B|. Once all n arcs have been drawn, the shape
composed of these connecting arcs is a curve of constant width.
The curve of constant width with n = 3 is the Reuleaux triangle
(Figure 1a); the curve with n = ∞ is the circle. The British 20p
and 50p coins are curves of constant width with n = 7, which—for
a vending machine—makes them indistinguishable from a round
coin.

The members of the set of curves of constant width have several
distinguishing features. For example the circle has maximum area,
while the Blaschke-Lebesgue theorem proves that the Reuleaux tri-
angle has the least area [6]. Also, the Reuleaux triangle can be used
to dig a square hole [5]; as n increases, the shape of the hole pro-
duced by rotating the corresponding curve of constant width has
increasingly rounded corners until when n = ∞, the hole dug by
rotating a circle is a circle.

3. EVOLVING CURVES
Evolving shapes is a popular application of evolutionary com-

putation. Rechenberg, in one of the first evolutionary computation
experiments ever carried out, evolved the shape of a curved pipe in
order to maximize fluid flow from a vertical input nozzle to a hori-
zontal output nozzle: surprisingly, he found that a pipe describing a
perfect quarter-circle arc is not the optimal solution to this problem
[8]. Other methods for evolving shapes can be found in [3].

Three genetic algorithm variants were devised to evolve two-
dimensional shapes, which are distinguished only by their genetic
encoding. In all three variants, each linear genome encodes 60
floating-point values in [0.0, 1.0]. The values are used to construct
60 radii; there is an angle of 60

2π
radians between each pair of radii.

Radii have a length within [0.1, 2.0]. The fitness of a constructed
shape is determined as follows. For each genome, a convex hull2 is
constructed using the tips of the 60 radii as the points to be consid-
ered. Figure 3a shows the radii and resulting convex hulls produced
by a sampling of random genomes.
2A convex hull produces a shape that contains no concavities
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Figure 5: a: The best solutions from a sampling of generations
in a single run. Figures indicate the generation. The best solu-
tion from the first initial population is shown top-left; the best
solution in the final population is shown bottom-right. b: The
tracks left by the heights of these shapes.

The set of widths W are calculated as the set of heights of the
bounding boxes at the 100 orientations [p1, p2 . . . p100] equally spa-
ced between 0 and π. The error of a genome is then given as

e =
max(W ) − min(W )

min(W )
.

Intuitively, e represents the amount of ‘bumpiness’ experienced by
an object when rolled π radians over the shape in question. The
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Figure 6: The best solutions from a sampling of generations in a single run, with no bias toward symmetric or asymmetric shapes.
Figures indicate the generation. The best solution from the first initial population is shown top-left; the best solution in the final
population after the last generation is shown bottom-right. The asterisk indicates the run reported in figures 4, 3 and 5.

genetic algorithm attempts to minimize e.
For all three algorithm variants, an initial population of 400 gen-

omes was constructed, and evolved for 200 generations. Deter-
ministic crowding [7] was used to maintain diversity. Each new
child genome underwent mutation. Mutation rate was set to 1

60
,

so that on average one gene was mutated per genome duplication.
A Gaussian-type mutation operator was used: an original gene
value was increased by eα with probability 0.5, and decreased by
eα otherwise, where α is a random value selected uniformly from
[−10, 0]. If the new value was less than zero it was set to zero;
if it was greater than one it was set to one. This operator ensures

that small mutations happen more often than large mutations. Each
child pair produced by deterministic crowding underwent one-point
crossover.

For all three algorithm variants, 36 independent runs were con-
ducted. In the first algorithm variant the 60 values encoded in the
genome are simply scaled from [0, 1] to [0.1, 2.0], producing the 60
radii. Figure 3 reports some initial random shapes from a sample
run, along with their corresponding tracks. A track is simply the
set of line segments that connect the 100 heights stored in W ; it
represents the change in height that an object would experience if
rolled over the shape along flat ground for one-half of the shape’s



rotation.
Figure 4 reports the errors of the genomes for the same run,

while figure 5 reports the best solutions from a sampling of gen-
erations, along with their corresponding tracks. Clearly, in this run,
the genetic algorithm converged on the curve of constant width with
n = 7 early in the run, around generation 28. Before this point, a
straight-edged 7-sided polygon with sides of differing length dom-
inated the population, as seen in generation 15.

However, this algorithm variant did not consistently converge on
this curve of constant width. Figure 6 reports the best shapes pro-
duced by all 36 runs of this variant. Henceforth only the convex
hulls and bounding circles are shown, and not the underlying radii,
for visual clarity. As can be seen in that figure, some runs con-
verged on an approximation of a circle, as indicated by how fully
they occupy their bounding circle (a circle drawn using the largest
radius from among the 60 radii of the shape). For example the
second best solution found (second from the left in the top row of
Figure 6) nearly completely fills its bounding circle. However sev-
eral of the other best solutions approximate 3-, 5- or 7-sided curved
polygons of constant width. In this respect this algorithm is com-
petitive with human ingenuity, in that it indicates, after less than 1
hour, that this problem has several alternative solutions, a fact that
took humanity about 7000 years to realize.

The consistent evolution of odd-sided curved polygons with more
or less equal sides and roughly equal curvature (within each poly-
gon type) suggests that there is a common symmetry among the
set of alternative solutions. Because the set of optimal solutions is
known, it is confirmed that symmetry does indeed exist in all solu-
tions: for each curve of constant width, each side is of equal length,
and each arc is of equal curvature. Based on the evolved solutions,
we chose to create two additional algorithm variants that enforce
symmetry. This is a common technique in evolutionary computa-
tion: observation of evolved solutions motivates the programmer to
revise their fitness function or genetic encoding.

In the second algorithm variant, genomes still encode 60 floating-
point values. However, the first value is rounded to an integer in
[2, 6], s. The 2nd to (� 60

s
� + 1)th gene values are then extracted

from the genome, and rounded to [0.1, 2.0]. (The remaining values
in the genome are not used in this algorithm variant.) This subset
of radii are then copied and concatenated s times. If i less than
60 radii have been created, they are filled in using the first i radii
from the subset are copied. This encoding ensures that between 2
and 6 sets of radii will be repeated around the circumference of the
shape, increasing the symmetry of the shapes. Another 36 indepen-
dent runs were conducted using this encoding scheme, but with the
same population size, number of generations, and selection, muta-
tion and crossover operations as in the first variant. Figure 7 depicts
some of the initial random shapes produced by this variant. As can
be seen, this encoding tends to produce polygons with curved sides.
With the help of the radii within the repeated subset, polygons with
sides greater than six and with sides of differing lengths can be
produced, such as the 10-sided polygon produced by genome 241.

Figure 8 reports the best shapes produced by each of the 36 runs
for this second algorithm variant. Clearly, the algorithm favors
polygons with five sides, although this variant does produce near-
perfect circles in several runs. This variant could then cause us to
conclude that this problem has two equally good solutions: circles
and curved five-sided polygons. However, as is known, there are
actually an infinite number of equal and optimal solutions. Figure
8 therefore indicates that this new, symmetry-enforcing encoding
has introduced a bias that favors some solutions over others.

This result is supported by Figure 9a, which reports how many
sides each genome encodes, over all 36 runs, and grouped accord-
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Figure 7: a: A sample of solutions from an initial random pop-
ulation (thick line), with no bias toward symmetric or asym-
metric shapes. b: The tracks left by the heights of these shapes.

ing to which generation it appears in. Clearly, genomes that encode
five sides quickly come to dominate each population early during
the evolutionary process. However, there is a minority group of
three-sided polygons that exists for some time before being com-
pletely replaced after about the 30th generation. The three even-
sided possibilities are replaced even more rapidly, even though they
appear in equal numbers in the initial random population.

It is hypothesized that the reason that three-sided polygons are
replaced that five-sided polygons is that because there are fewer
radii to optimize in this latter case, evolution can better optimize the
curvature of these polygons to approach the corresponding curve of
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Figure 8: The best solutions from a sampling of generations in a single run, with enforced symmetry.

constant width. In order to test this hypothesis, a third variant was
devised that is identical to the second variant, except that the first
value is scaled to [2, 8] instead of [2, 6]. Once again, 36 runs were
conducted using the same evolutionary parameters as the first two
variants.

Figure 9b reports the number of genomes that encode which
number of sides. In this case seven-sided polygons come to domi-
nate the population. This is somewhat surprising, as s = 7 genomes
do not produce symmetric shapes: the subset containing �60/7� =
8 radii is repeated seven times, giving 56 radii; the remaining four
radii are filled in from the first four radii in the repeated subset,
leaving a shorter, eighth side. Also, five-sided polygons clearly

dominate all populations early on in evolution, but are gradually
replaced by the seven-sided polygons starting around the 50th gen-
eration. This observation seems to fit with our prior hypothesis that
polygons with a greater number of sides can be better optimized
toward a curve of constant width. However the reason why the
five-sided polygons clearly dominate early on is not yet well un-
derstood. The surviving minority of five-sided polygons near the
end of evolution is explained by the fact that three of the 36 runs
produced clear five-sided curved polygons of constant width, with
the remaining runs all converged on near-perfect circles (data not
shown).

Thus, this encoding change between the second and third algo-
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Figure 9: a: The number of sides of each shape found in
each population, when symmetry is enforced, and the maxi-
mum number of sides is fixed at 6. Solutions from all 36 runs
are considered, and are grouped according to which generation
they appeared in. a: The number of sides of each shape found
in each population, when symmetry is enforced, and the maxi-
mum number of sides is fixed at 8.

rithm variant produces results that suggest that the circle is a much
better solution than the five-sided curved polygon, a fact that is
known to be false.

4. DISCUSSION AND CONCLUSIONS
In this paper we have investigated the evolution of curves of con-

stant width, of which there are known to be an infinite number of
equal and optimal solutions. The most obvious of these is the cir-
cle, which has been known to Western civilization since the fifth
millennium BC. However it was not until the end of the 19th cen-
tury that it was discovered that the other solutions exist. Here we
have documented the use of three evolutionary algorithm variants
to explore this design space.

We found that when less constraints were placed on the problem—
in this case, symmetry was not enforced—more of the optimal
solutions were approximated. These included clear examples of
approximations to the Realeaux triangle, as well as the five- and
seven-sided curved polygons that are three instances of curves of
constant width. Based on observation of solutions from several
independent runs, a more restrictive encoding that enforced sym-

metry was used, which produced solutions with one order of mag-
nitude better fitness (compare the errors of the best solutions re-
ported in Figure 8 to those reported in Figure 6). By restricting
the encoding even further—increasing the number of sides allowed
in evolved polygons—the algorithm’s bias is changed: in the sec-
ond encoding it tends to converge on an equal number of five-sided
curved polygons and circles; in the third encoding it converges al-
most exclusively on circles.

This work indicates that changing an encoding to increase the
fitness of resulting solutions not only biases the algorithm toward
solutions that fall within this restriction (which is to be expected),
but also steers it away from optimal solutions that are still valid
within the restricted encoding. For example in this problem, the
Reauleaux triangle is an optimal solution and can be described by
the symmetric encoding, but it is never output as the best solution
by any of the 2 × 36 independent runs that enforce symmetry.

The findings of this paper are therefore two-fold. First, we have
demonstrated that using a simple encoding, a genetic algorithm can
discover in under one hour of real time (using a single processor)
what took humankind over 7000 years to discover: that there is
more than one curve of constant width. So although artificial evo-
lution does not exceed human ingenuity in this particular design do-
main by producing a better design that those discovered previously,
it has clearly been demonstrated that it is more adept at discovering
that this problem has more than one optimal solution.

Second, we have shown that although restrictive encodings pro-
duce better evolved designs at the expense of excluding equally
good designs that are not describable by the encoding, they can
also, in some cases, exclude solutions that are describable by the
encoding. This latter finding helps to better define how genetic en-
codings bias evolutionary search.
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