
Exploiting Multiple Robots to Accelerate Self-Modeling

Josh Bongard
Department of Computer Science

University of Vermont
33 Colchester Ave., Burlington, VT 05405

josh.bongard@uvm.edu

ABSTRACT

In previous work [8] a computational framework was demon-
strated that allows a mobile robot to autonomously evolve
models its own body for the purposes of adaptive behavior
generation or recovery from damage. Conceivably, robots
working in tandem could share their experiences such that
one robot, when faced with a situation already encountered
by another robot, could draw on that experience and adapt
more rapidly. A first demonstration of this is given here:
multiple robots with the same or similar body plan, but
acting independently, combine self-models such that they
accelerate modeling. Two approaches are investigated: the
robots feed their experiences back into a common model-
ing engine, or they maintain their own modeling engine but
share their best self-models with each other. It was found
that the latter approach achieves a significant improvement
in modeling compared to a single robot and compared to
the former approach. This finding has implications for how
to design autonomous robots acting in concert to achieve
large-scale tasks.

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms

Algorithms

Keywords

Evolutionary robotics, self-modeling, artificial intelligence

1. INTRODUCTION
Industrial robots have permeated and revolutionized ev-

ery aspect of heavy industry because they can execute pre-
programmed actions in fixed, indoor industrial environments.
Robots would be equally useful in outdoor or home envi-
ronments, but creating devices that can continuously adapt

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7-11, 2007, London, England, United Kingdom
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

and autonomously cope with the constantly changing as-
pects of such environments has had limited success. Rather
than continuously having to re-program new controllers for
a robot once it or its environment changes, evolutionary
robotics [27] is a field that uses evolutionary computation
to autonomously generate behaviors for robots. There are
three main approaches to evolutionary robotics: controllers
are either evolved directly on the physical device, requiring
thousands of evaluations [12, 14]; controllers are adapted
from an existing, hand-designed controller [31]; or a hand-
designed simulator is used to evolve controllers before trans-
feral to the physical device [20, 28]. The first approach is
infeasible for continuous, rapid adaptation; the second ap-
proach requires a human to create the starting behavior; and
the third approach requires a human to craft a simulation
of the robot.

In previous work [7, 8] we introduced a fourth method that
overcomes these obstacles by allowing the robot to evolve
simulations of itself and its local surroundings, and then use
the best of the evolved simulations to internally rehearse
behaviors before attempting them in reality. Rather than
most evolutionary computation-based modeling approaches
in which a set of training data is generated first and then
models are evolved to explain that data (eg. [24, 1, 16]), the
framework developed in [7, 8] uses an active learning [2] ap-
proach: modeling alternates with a search for new training
data, based on the current state of the models.

This raises the question of how to search for new training
data. Seung et al. [29] showed that in theory, the optimal
choice for the next training data is the one which causes the
current set of models to disagree in their predictions. In
previous work we introduced the estimation-exploration
algorithm [7], or EEA, which uses an evolutionary algo-
rithm to search for these informative training samples: a fit-
ness function rewards candidate training data for how much
model disagreement it causes. A second evolutionary algo-
rithm optimizes a set of models against the current set of
training data evaluated by the target system being modeled.
We have applied the EEA to problems in machine learning
[5], gene network identification [10], damage localization in
truss structures [23], and to robotics [4, 9, 8].

In the robotics application we showed that a robot could
use this technique to diagnose and recover from body dam-
age [8] by inferring the structure of its own body (or changes
in its body structure as a result of damage). While much
progress has been made allowing robots to model their en-
vironment [32], relatively little is known about how a robot
can learn its own morphology, which cannot be inferred by

Figure 1: The EEA applied to a quadrupedal robot. The algorithm begins by supplying a random action
(1. in a) to the target robot (b). The action causes the robot to move, and its main body tilts (c). The
tilt information is bundled with the action that caused it, and supplied to the modeling phase. The robot
meanwhile relaxes back to the default flat position. In the modeling phase (d), a set of 15 models are evolved
to explain all the tilt information extracted from the target robot so far. These evolved models are then used
to search for a new action (a). This process is repeated for a set number of cycles.

direct observation or retrieved from a database of past ex-
periences [22]. Self-modeling would be useful when a robot
operates in remote or dangerous environments, and would
therefore have to adapt its behavior to unforeseen circum-
stances autonomously. Other approaches to robot dam-
age recovery have focussed on built-in redundancy [33, 11]
or contingency plans designed for anticipated failures [34].
However, self-modeling requires the potentially damaged robot
to perform behaviors to ascertain how it is damaged, and
use those experiences to internally model itself, which takes
time.

In this paper it is shown how multiple, independent robots
with the same body plans can accelerate self-modeling by
sharing their experiences. Robot teams is an area of in-
tense research. Collective robotics [25, 15] is concerned with
robots working together on some collective task. Although
robot teams have been used for collaborative modeling, it
has been restricted to external modeling: for example creat-
ing global maps [13, 26] or estimating object positions [30].

The next section describes the algorithm as applied to

a single robot, as well as two alternative approaches for
combining the experiences of multiple, independently-acting
robots. Section 3 provides results indicating how these two
approaches fare against the algorithm applied to a single
robot, and against each other. Section 4 provides some dis-
cussion and concluding remarks.

2. METHODS
The EEA, applied to a robotics application, is outlined

in Fig. 1. In this application the algorithm attempts to
discover the correct topology of a simulated, four-legged
robot, without direct information about how the robot’s
body parts are connected together: the robot cannot see
its own body with a camera, nor can it sense at its joints
which parts are connected there. Previously [8] we showed
that this framework allows a physical robot to automatically
construct a simulation of itself, use that simulation to inter-
nally rehearse behaviors, and automatically diagnose and
recover from damage. The framework is composed of three
components: the robot to be modeled (Fig. 1b,c), a set of

self-models (Fig. 1d), and a set of candidate actions that
can be executed on the robot (Fig. 1a).

2.1 The robot
The target robot used here is a simulated, four-legged

robot (Fig. 1b). The robot is composed of nine body parts:
the main body, and four upper and lower legs (Fig. 2a).
The eight leg parts are motorized, and can rotate through
the vertical plane that lies parallel to the leg. Positive ro-
tations cause the part to rotate upward, and negative ro-
tations downward. The robot is simulated within a three-
dimensional, physics-based environment1. A training data
in this application is an action: a set of eight desired mo-
tor rotations, expressed in degrees (Fig. 1a), that causes all
eight motors to rotate, sending the robot to a fixed position
(Fig. 1c). In this position, two tilt sensors record how much
the robot’s main body tilts to the left or right (−90o to
+90o), and how much forward or backward (−90o to +90o).
These two angles together form the result generated by the
target robot. The robot then rotates the motors back to 0o,
causing the robot to lie flat again. The result is bundled
with the action that caused them, and sent to the modeling
phase (Fig 1d).

2.2 The models
In the modeling phase (Fig. 1d), a set of 15 model

robots are evolved using a parallel hill climber to infer the
way in which the robot’s body parts are attached together.
The training set is composed of the set of action/result pairs
that have been obtained from the target robot so far. On
the first cycle through the algorithm, the modeling phase
has one pair; on the second cycle through it has two ac-
tion/result pairs; and so on. The algorithm is assumed to
know: how many motorized parts there are (eight); the mass
and geometry of each part; parts are attached perpendicu-
larly to each other; each body part is horizontal; and that
actuating a body part with a positive angle will cause it
rotate upward by that amount, and a negative angle down-
ward by that amount. In future work these constraints will
gradually be removed. The algorithm must indirectly infer
how the parts are connected using only the tilt information
in the training data.

A model is encoded as a 8 × 2 genotype G with floating-
point values in the range [0.0, 1.0], and dictates how the
nine known body parts (Fig. 2a) should be connected to
one another to produce a phenotype. The phenotype is a
three-dimensional, physically realistic simulated robot, like
those shown in Fig. 1d. The genotype is translated into a
phenotype as follows. Each row in the matrix corresponds to
one of the eight body parts. For each of the i = 1, 2, . . . , 8
body parts, entry G(i, 1) is scaled to an integer value in
[0, i−1]. This indicates to which body part the current part
attaches. A value of 0 indicates the part attaches to the
main body; a value of 1 indicates it attaches to motorized
body part 1; and so on. In the example shown in Fig. 2b,
part 1 attaches to part 0 (G(1, 1) = 0), and part 5 to part
1 (G(5, 1) = 1). The second value in the row, G(i, 2), in-
dicates where on the periphery of the parental body part
the current part should be attached. A value of G(i, 2) = 0
indicates that part i should connect to the upper left of the
parent body part; larger values attach the part at further

1ode.org

a

b

Figure 2: Genotype to phenotype translation for the
self-models. The algorithm begins by knowing how
many motorized parts the robot is composed of (a).
A model genotype G encodes information for con-
necting the parts together. G(i, 1) indicates to which
body part i should attach. G(i, 2) indicates where on
the periphery it should attach.

positions around the periphery of the parent part, proceed-
ing in a clockwise direction. In the example shown in Fig.
2b, body part 1 attaches to the upper-right of the main body
(G(1,2)=0.25), and then body part 5 attaches in turn to the
upper-right of body part 1 (G(5,2)=0.25).

Once a model robot is formed, it is actuated with each
of the actions in the training data that have already been
executed on the target robot. For each action, the result-
ing tilt of the model robot’s main body is recorded. The
subjective error of a model is then given by

me =

∑k

i=1(|t
(i)
lr − m

(i)
lr | + |t

(i)
fb − m

(i)
fb |)

2k
, (1)

where k is the total number of actions that have been per-

formed by the target robot so far; t
(i)
lr is the amount the

target robot tilted to the left or right when it executed ac-

tion i; m
(i)
lr is the amount the model robot tilted to the left

or right when it executed action i; t
(i)
fb is the amount the

target robot tilted forward or backward when it executed

action i; and m
(i)
fb is the amount the model robot tilted to

the left or right when it executed action i. In short, the
accuracy of a model is how well it reproduces the behaviors
of the target robot when supplied with the same actions.

A hill climber then optimizes each of the 15 models in an
attempt to minimize me. Once a model has been evaluated,
its genotype is copied, a single value in the matrix is chosen
at random, and Gaussian mutation is applied. A new model
is created from this matrix, and evaluated. If the new model
achieves a lower error than the parent model, the parent
genotype is discarded; otherwise, the child is discarded. This
process is continued for 200 generations, for each of the 15
models. These optimized models are then passed to the
testing phase (Fig. 1a) for finding a new action.

On the second and subsequent cycles through the model-
ing phase, hillclimbing begins with the best models from the
previous cycle, but the models are re-evaluated against the
larger training set, which contains the original action/result
pairs plus the new pair just obtained from the target robot.

2.3 The actions
The testing phase attempts to find a new action that,

when executed by the target robot, will provide more infor-
mation about the robot’s topology. At the outset of a trial,
36 random actions are generated, but not evaluated on the
target robot (Fig. 1a). Initially, one of the 36 actions is
selected at random and sent to the target robot to gener-
ate the first training data. On the second and subsequent
cycles, the optimized models from the modeling phase are
used to determine which new action to send to the target
robot. Each action is supplied to the fifteen models, and the
fitness of an action (af) is computed using

σ2(mlr) + σ2(mfb)

2
−

∑15
i=1 |m

(i)
lr − m

′(i)
lr | + |m

(i)
fb − m

′(i)
fb |

30
, (2)

where σ2(mlr) is the variance across the left and right tilt-
ing of the 15 optimized models when supplied with action
a, and σ2(mfb) is the variance across the forward and back-
ward tilting of the 15 optimized models. In short, the first
term rewards an action for how much it causes the opti-
mized models to tilt in different directions. This reflects
the theoretical finding from active learning in which it was
shown [29] that the best way to choose a new piece of train-
ing data to be evaluated by the target system (in this case,
the simulated robot) is the one that causes the models to
disagree in their predictions about this training data. Once
this training data is evaluated by the system being modeled
and added to the training set, now only some of the models,
not all, will agree with the results from the system, because
the models disagree about the new training data. Further
modeling can then replace these recently-revealed erroneous
models with new models that explain all the old data, plus
the new training data. This has the effect of altering the
fitness landscape of the self-models to allow for further evo-
lution, a common and desirable property of co-evolutionary
algorithms [18, 21]. The EEA is a co-evolutionary algo-
rithm in the sense that actions try to disprove self-models,
and self-models attempt to explain actions.

The second term penalizes potentially ‘dangerous’ actions.
‘Dangerous’ actions are those which may cause the target
robot to behave very differently from the self-models, even
though the self-models very accurate and therefore topo-
logically similar to the target robot. For example, if an
action causes the target robot to balance on its front and
back legs, it may fall to the left, while accurate models may
fall to the right simply because of slight topological differ-
ences. These ‘dangerous’ actions have the effect of making
the model search space very rugged: accurate models sud-
denly experience a misleading increase in error. ‘Dangerous’
actions are avoided by taking the current model set and pro-
ducing mutants of them: a copy of a model is made, and
then topologically perturbed slightly. For example, in Fig.
1a, model ∗ tilts to the right, while its mutant ∗† tilts for-
ward. The more that the mutants disagree with their mod-
els, the more likely the target will disagree with the models
as well. For a more detailed treatment of this phenomenon,
see [3]. In short, this fitness functions selects both for in-

Figure 3: Alternative approaches for exploiting two
or more robots for self-modeling. In the Com-

bined approach (a), two robots each execute differ-
ent actions, and then feed those two actions (along
with their results) into a common EEA. In the
Swap approach (b), each robot maintains its own
EEA, but they swap their current best self-models.
SwapCrooked uses the same regime as Swap, but the
two communicating robots are slightly different (c).

formativeness (the first term) and against potential danger
(the second term).

Of the 36 actions, the one with maximal af (and which
has not yet been executed) is sent to the target robot for
execution. It is then bundled with the resulting tilt infor-
mation, and passed to the modeling phase, where the num-
ber of training data is incremented from k to k + 1. Once
the modeling phase has been cycled through 16 times, the
algorithm halts, and returns the model with the lowest error
as its best guess as to the topology of the target robot.

2.4 The EEA on Multiple Robots
Two alternative approaches to parallelizing the EEA across

several independently-acting robots is possible: they may
share a common EEA (Combined), or each robot may exe-
cute its own EEA and swap self-models between them (Swap).

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Target Robot Evaluations

M
o
d
e
l
O

b
je

c
ti
v
e
 E

rr
o
r

Normal
Combined
Swap

Figure 4: Comparison of modeling ability for a single robot self-modeling (the normal EEA); two robots that
swap their best models at the end of each modeling phase (Swap); and two robots that feed their experiences
into a common EEA (Combined). The Combined trial accumulates two target robot evaluations per cycle:
therefore, the third bar is plotted every two evaluations.

Combined—Fig. 3a outlines the first approach, in which
two or more robots share a common EEA. Rather than the
testing phase outputting a single action, two actions are
output. During the first pass through the testing phase,
two actions are chosen at random from the 36 and out-
put; during the second and subsequent passes, the action
with highest af , and the one with the second-highest af are
output. The first robot executes the first action, and the
second robot executes the second action. The two actions,
along with their results, are bundled and sent to the com-
mon modeling phase. In the normal EEA, the first pass
through the modeling phase optimizes models against 1 ac-
tion/result pair; during the kth pass, models are optimized
against k action/result pairs. In Combined, models are first
optimized against two action/result pairs; during the kth
pass through the modeling phase, they are optimized against
2k action/result pairs.

Swap—Fig. 3b outlines the second approach, in which two
or more robots maintain their own EEA. However, unlike the
normal EEA, when a cycle through the modeling phase is
finished, the robot waits for a signal from the other robot (or
robots) that it has also just finished a cycle of self-modeling.
At this point, they swap best self-models: the first robot
makes a copy of its best self-model, and overwrites the worst
self-model maintained by the second robot, and vice versa.
The robots then continue with the testing phase as usual.

Swap+Crossover—In order to allow the EEA to combine
genetic material from the best self-models across different
robots, crossover was introduced into the modeling phase of
Swap, in the hopes that the accurate parts of the best self-
models from different EEAs would be combined. Crossover
is accomplished as follows. Whenever new child self-models
are being created in the modeling phase by the hillclimber,
the genotype matrices of the 15 parents are copied and mu-
tated as explained above. With a 50% probability, a child
is paired with another child in preparation for crossover.
Then, each row i is swapped between the children with a
50% probability.

Swap3—Swap (without crossover) was expanded to three
robots working together. At the end of each cycle through
the modeling phase, each robot receives a copy of the best
self-model from each of the other two robots. It then re-
places its second-worst self-model with one of these, and its
worst self-model with the other.

SwapCrooked—Finally, Swap was run again, but instead
of using two identical robots, slight random perturbations

were introduced into the masses, sizes and positions of the
body parts (Fig. 3c). In reality, no two robots in a group
are ever exactly the same: slight manufacturing error and
different wear-and-tear experienced by the machines causes
them to have slightly different morphologies, and therefore
behave slightly differently. This regime reflects this reality.

3. RESULTS AND DISCUSSION
Thirty independent trials were performed using the nor-

mal EEA, 30 of Combined, and 30 of Swap. For Swap, the
first two trials were allowed to communicate with one an-
other; trials 3 and 4 communicated with one another; and
so on. For the normal EEA and Swap, 16 cycles were al-
lowed (Fig. 1a,b,c and d were cycled through 16 times).
Combined was only executed for 11 cycles, because more
model evaluations are performed per cycle by this algorithm
than by the normal EEA or Swap: each model in Com-
bined must be evaluated 2k times during cycle k, whereas
each model in the other two algorithms only need be eval-
uated k times. It was found that when the 11th cycle of
self-modeling was completed during a trial of Combined, it
had performed about the same total number of model eval-
uations as those performed by the normal EEA and Swap
after 16 cycles: slightly less than 250, 000 evaluations.

For each trial, at the end of each cycle through the model-
ing phase, the accuracy of the self-model with lowest subjec-
tive error was assessed. This is accomplished by computing
that self-model’s objective error, given as

mo =

∑8
i=1

√

(t
(i)
x − m

(i)
x)2 + (t

(i)
z − m

(i)
z)2

8
, (3)

where t
(i)
x is the horizontal position of body part i on the

target robot when it lies flat, m
(i)
x is the horizontal position

of body part i on the model robot, t
(i)
z is the z-position of

body part i on the target robot, and m
(i)
z is the z-position

of body part i on the model robot. Therefore, the objective
error of a model is the mean Euclidean difference between
the positions of the target robot’s body parts, and the model
robot’s body parts. This metric then gives an unbiased in-
dication of how close the model is to the topology of the
target robot.

Fig. 4 reports the mean accuracies of the best models
produced by the algorithm variants at the end of each mod-
eling phase. As can be seen, Combined shows no modeling

Cycle 1

16th
Trial

Cycle 1

17th
Trial

Cycle 2

Cycle 2

Cycle 3

*

Cycle 3

Cycle 4

Cycle 4

Cycle 5

Cycle 5

Cycle 6

Cycle 6

Cycle 7

Cycle 7

Cycle 8

Cycle 8

Cycle 9

16th
Trial

+

Cycle 9

17th
Trial

Cycle 10

Cycle 10

Cycle 11

Cycle 11

x

Cycle 12

Cycle 12

Cycle 13

Cycle 13

Cycle 14

Cycle 14

Cycle 15

Cycle 15

Cycle 16

Cycle 16

*

+’

x’

’

Figure 5: An illustration of two robots successfully sharing self-models. The best models obtained by two
robots working together are shown: the model with the lowest subjective error (Eqn. 1) at the end of
each cycle through the modeling phase is shown. Diagonal arrows indicate when sharing helped: the best
self-model from one robot became the best self-model in the other robot’s model population.

improvement over the normal EEA, and indeed its models
are less accurate after 16 target robot evaluations have been
performed (the second bar is statistically significantly higher
than the first in the 16th grouping). In contrast, Swap be-
gins to outperform the normal EEA during the 13th cycle
(the third bar is statistically significantly lower than the first
bar in the 13th grouping onward).

Although the reason why Combined performs worse than
the normal EEA is not known, it is suspected that the mod-
eling process falters as it accumulates training data faster
than it can find models to explain it. This was observed
previously for a different application [6]. Regardless, it is
clear that between these two approaches to parallelizing
self-modeling across robots, allowing the robots to maintain
their own EEA is superior to making them share one.

Fig. 5 illustrates how two robots using Swap can out-
perform a single self-modeling robot. In the 16th and 17th
inter-communicating trials, the first robot manages to cor-
rectly model its two forward body parts during its third
cycle of self-modeling (indicated by ∗). This self-model is
transferred to the second robot, and becomes that robot’s
best self-model: the two forward body parts are both mod-
eled correctly in the second robot’s best self-model in the
next cycle (indicated by ∗′). Later, the first robot devel-
ops a topologically correct model during the ninth modeling
phase (indicated by +), although the body parts are still
slightly crooked. This self-model, when transferred, rapidly
supplants the best self-model of the second robot (indicated
by +′). In the 11th modeling cycle the second robot straight-
ens the front and left body parts (indicated by x), and this
improvement is transferred successfully to the first robot
(indicated by x′).

The reason why the second robot is able to improve how it
models the forward and left body parts in cycle 11 is due to
the fact that it has accumulated more experiences related to

those body parts. In other words, those body parts were ac-
tuated downward (and thus contributed to the main body’s
tilt) more often by the second robot than they were by the
first robot (data not shown). It is this process—reception
of a good self-model, subsequent improvement of that self-
model in response to the receiving robot’s different experi-
ences, and transferral of the resulting better self-model back
to the donating robot—that is hypothesized to the reason
why Swap outperforms the normal EEA. This improvement
stands despite the fact that a robot cannot combine well-
modeled body parts from two different self-models into a
new, better self-model.

To address this limitation, 30 independent trials of Swap
with crossover were performed (Swap+Crossover). As can
be seen in Fig. 6, incorporating crossover into Swap actu-
ally begins to harm the algorithm’s performance, relative
to Swap without crossover, during the 14th cycle (the third
bar is statistically significantly higher than the second bar
in groupings 14, 15 and 16). In another paper [3] it is shown
that for the normal EEA, crossover reduces the mean error
of the model population, but it also reduces the population’s
variation. This frustrates the testing phase’s ability to find
informative actions based on model disagreement, because
more similar models disagree less. This phenomenon reap-
pears here in Swap+Crossover, even though in this set-up,
self-models collected from different robots are (potentially)
more different from one another than different self-models
generated by the same robot. It is assumed that despite
this greater initial self-model variation, crossover still di-
lutes this variation sufficiently during modeling to compro-
mise the testing phase.

Thirty trials with three robots intercommunicating were
then performed (Swap3). In Swap3, the first, second and
third trials communicated with each other; the fourth, fifth
and sixth trials intercommunicated; and so on. Fig. 6 also

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

Cycle

O
b
je

c
ti
v
e
 E

rr
o
r

Normal
Swap
Swap+Crossover
Swap3
SwapCrooked

Figure 6: Comparative performance of EEA variants. The mean objective errors (Eqn. 3) of the best models
produced by the algorithm variants at the end of each cycle through their modeling phase are reported. The
first two bars in each grouping (Normal and Swap) reproduce the data reported in Fig. 3.

shows that three robots sharing self-models (Swap3) do not
outperform pairs of robots sharing self-models (Swap): the
fourth bar in each group is not significantly lower than the
second bar. The reason for this is not immediately clear,
however it seems likely that the lack of a mechanism for
combining good genetic material from the different robots
into a single self-model is to blame.

Finally, 30 trials of SwapCrooked were performed. In the
first and second trial, two slightly different robots traded
self-models; in the third and fourth trial, another two slightly
different robots traded self-models; and so on. Fig. 6 in-
dicates that even if two slightly different robots share self-
models (SwapCrooked), they start to produce more accurate
models on average during the 10th cycle onward than one
robot acting in isolation (Normal): the fifth bar is statisti-
cally significantly lower than the first bar during cycles 10,
12 and 13, and slightly lower in cycles 11, and 14 onward.

4. CONCLUSIONS
Here is has been shown that it is advantageous to combine

experiences from mobile robots attempting to infer their own
morphologies. It was shown that a parallelized framework in
which two robots maintain separate modeling engines, but
share copies of their best self-models with one another, per-
formed better than a single robot modeling alone. Moreover,
it performed better than an alternative parallelized frame-
work, in which experiences from pairs of robots were fed into
a common modeling engine. This is additionally desirable
because in this former approach the robots can be more au-
tonomous: not only do they behave independently, but they
model themselves independently as well.

It was also shown that even if the two robots sharing self-
models are slightly different morphologically—which would
be true for any physical robots—they can still help one an-
other with the modeling process, thereby converging on good
self-models more quickly than a single robot operating alone.

Finally, it was found that allowing robots to combine ge-
netic information from different self-models does not acceler-
ate modeling, and in fact slows it. This agrees with a similar
result that was found for a single robot attempting to model
its own body [3]. This inability to combine genetic material
from different self-models also disbars a robot from combin-
ing genetic material from two self-models originating from
different robots. Nonetheless, a robot may receive a better
self-model from another robot, improve that self-model in

light of its own experiences, and return the improved self-
model to the donating robot. In future work alternative
crossover strategies will be investigated which transfer ge-
netic information between self-models from different robots,
but maintain diversity across the model set of a single robot.

Despite the improved modeling obtained by allowing two
robots to work together, when the same framework was ap-
plied to three robots working together, they did not model
their own bodies any better than the robot pairs. This
indicates that further improvements to the framework are
required such that the ability of the robots to self-model
themselves when working as a team scales with the number
of team members.

Although robot teams working toward a common goal has
been studied intensively, focus has been on enabling the
robots to collect global information by exploring their en-
vironment [13, 26] or collectively manipulating an object
that could not be manipulated by a single robot [19, 17].
This work points to a new way in which robots can help
one another: they can share their experiences by sharing
self-models. It is interesting to note that biological agents
can only share experiences indirectly and slowly through ge-
netic inheritance, imitation, or language: the robots demon-
strated here share experience directly by trading self-models.
Previously we have shown [8] that self-modeling can en-
able a robot to adapt to unforeseen situations such as body
damage. By sharing experiences in order to accelerate self-
modeling, one robot may be able to adapt to a new situation
more rapidly if it draws on the experiences of a second robot
that has already encountered that situation. In this way, the
ability of a robot team to continuously adapt to a changing
environment could be increased simply by enlarging the size
of the team.

5. REFERENCES
[1] H. Andrew. System identification using genetic

programming. In Proceedings of the Second Intl. Conf.
on Adaptive Computing in Engineering Design and
Control, pages 57–62, 1996.

[2] Y. Baram, R. El-Yaniv, and K. Luz. Online choice of
active learning algorithms. Journal of Machine
Learning Research, 5:255–291, 2004.

[3] J. Bongard. Action-selection and crossover strategies
for self-modeling machines. Proceedings of The
Genetic and Evolutionary Computation Conference
(GECCO 2007), 2007. to appear.

[4] J. Bongard and H. Lipson. Once more unto the
breach: Co-evolving a robot and its simulator. In
Proceedings of the Ninth International Conference on
the Simulation and Synthesis of Living Systems
(ALIFE9), pages 57–62, 2004.

[5] J. Bongard and H. Lipson. Active coevolutionary
learning of deterministic finite automata. Journal of
Machine Learning Research, 6(Oct):1651–1678, 2005.

[6] J. Bongard and H. Lipson. ‘Managed challenge’
alleviates disengagement in co-evolutionary system
identification. In Proceedings of the 2005 Genetic and
Evolutionary Computation Conference, pages 531–538,
Washington DC, 2005.

[7] J. Bongard and H. Lipson. Nonlinear system
identification using coevolution of models and tests.
IEEE Transactions on Evolutionary Computation,
9(4):361–384, 2005.

[8] J. Bongard, V. Zykov, and H. Lipson. Resilient
machines through continuous self-modeling. Science,
314:1118–1121, 2006.

[9] J. C. Bongard and H. Lipson. Automated robot
function recovery after unanticipated failure or
environmental change using a minimum of hardware
trials. In Proceedings of The 2004 NASA/DoD
Conference on Evolvable Hardware, pages 169–176,
Seattle, WA, 2004.

[10] J. C. Bongard and H. Lipson. Automating genetic
network inference with minimal physical
experimentation using coevolution. In Proceedings of
The 2004 Genetic and Evolutionary Computation
Conference, Seattle, WA, 2004.

[11] F. Caccavale, L. Villani, and P. Ax, editors. Fault
Diagnosis and Fault Tolerance for Mechatronic
Systems, New York, 2002. Springer Verlag.

[12] D. Cliff, P. Husbands, and I. Harvey. Evolving visually
guided robots. In J.-A. Meyer, H. Roitblat, and
S. Wilson, editors, Proceedings of the Second
International Conference on the Simulation of
Adaptive Behaviour, Boston, MA, 1993. MIT Press.

[13] M. Di Marco, A. Garulli, A. Giannitrapani, and
A. Vicino. Simultaneous localization and map building
for a team of cooperating robots: A set membership
approach. IEEE Transactions on Robotics and
Automation, 19:238–249, 2003.

[14] D. Floreano and F. Mondada. Hardware solutions for
evolutionary robotics. In P. Husbands and J.-A.
Meyer, editors, EvoRobots, pages 137–151, 1998.

[15] M. Gini and R. Voyles, editors. Distributed
Autonomous Robotic Systems 7, New York, 2006.
Springer.

[16] G. Gray, D. Murray-Smith, Y. Li, K. Sharman, and
T. Weinbrenner. Nonlinear model structure
identification using genetic programming. Control
Engineering Practice, 6:1341–1352, 1998.

[17] R. Groß and M. Dorigo. Cooperative transport of
objects of different shapes and sizes. Proceedings of
ANTS, pages 107–118, 2004.

[18] W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D,
42:228–234, 1990.

[19] A. Ijspeert, A. Martinoli, A. Billard, and
L. Gambardella. Collaboration Through the

Exploitation of Local Interactions in Autonomous
Collective Robotics: The Stick Pulling Experiment.
Autonomous Robots, 11(2):149–171, 2001.

[20] N. Jakobi. Evolutionary robotics and the radical
envelope of noise hypothesis. Adaptive Behavior,
6(1):131–174, 1997.

[21] E. D. Jong and J. Pollack. Ideal evaluation from
coevolution. Evolutionary Computation,
12(2):159–192, 2004.

[22] D. Keymeulen, M. Iwata, Y. Kuniyoshi, and
T. Higuchi. Online evolution for a self-adapting
robotics navigation system using evolvable hardware.
Artificial Life, 4:359–393, 1998.

[23] B. Kouchmeshky, W. Aquino, H. Lipson, and J. C.
Bongard. Coevolutionary strategy for structural
damage identification using minimal physical testing.
International Journal for Numerical Methods in
Engineering, 69(5):1085–1107, 2006.

[24] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT
Press, Boston, MA, 1992.

[25] C. Kube and E. Bonabeau. Cooperative transport by
ants and robots. Robotics and Autonomous Systems,
30(1-2):85–101, 2000.

[26] R. Madhavan, K. Fregene, and L. Parker. Distributed
Cooperative Outdoor Multirobot Localization and
Mapping. Autonomous Robots, 17(1):23–39, 2004.

[27] S. Nolfi and D. Floreano. Evolutionary Robotics. MIT
Press, Boston, MA, 2000.

[28] J. B. Pollack, H. Lipson, S. Ficici, P. Funes,
G. Hornby, and R. Watson. Evolutionary techniques
in physical robotics. In J. Miller, editor, Evolvable
Systems: from biology to hardware, pages 175–186.
Springer-Verlag, 2000.

[29] H. S. Seung, M. Opper, and H. Sompolinsky. Query
by committee. In Proceedings of the Fifth Workshop
on Computational Learning Theory, pages 287–294,
New York: ACM Press, 1992.

[30] A. W. Stroupe, M. C. Martin, and T. Balch.
Distributed sensor fusion for object position
estimation by multi-robot systems. IEEE
International Conference on Robotics and Automation,
2:1092–1098, 2001.

[31] R. Tedrake, T. Zhang, and H. Seung. Learning to walk
in 20 minutes. In Proceedings of the Fourteenth Yale
Workshop on Adaptive and Learning Systems, Yale
University, New Haven, CT, 2005.

[32] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. MIT Press, Cambridge, MA, 2005.

[33] M. Visinsky, J. Cavallaro, and I. Walker. Robotic fault
detection and fault tolerance: A survey. Reliability
Engineering and System Safety, 46:139–158, 1994.

[34] S. Zilberstein, R. Washington, D. S. Benstein, and
A.-I. Mouaddib. Decision-theoretic control of
planetary rovers. Lecture Notes in Computer Science,
2466:270–290, 2002.

