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ABSTRACT

In order to evolve large robot controllers for increasingly
complex tasks, fully connected neural networks are not fea-
sible. However, manually designing sparse neural connectiv-
ity is not intuitive, and thus should be placed under evo-
lutionary control. Here I show how spontaneous structural
modularity can arise in the connectivity of evolved robot
controllers if the controllers are boolean networks, and are
selected to converge on point attractors that correspond to
successful robot behaviors.
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1. INTRODUCTION
In the field of evolutionary robotics [11, 19], evolutionary
algorithms have been employed to optimize neural network
controllers such that the robots succeed at some desired
tasks. These tasks are typically simple sensor-motor coor-
dination tasks, such as legged locomotion (e.g. [10]), wall
following (e.g. [17]), visually-guided navigation [11], social
coordination (e.g. [28]), or object manipulation [16]. Given
the simplicity of the tasks, the robots are usually similarly
simple: they are composed of at most a dozen sensors and
motors attached to mechanical degrees of freedom (DOFs),
and a corresponding number of internal neurons.

However in order to evolve robots capable of more complex
tasks, it will be necessary to construct robots with hundreds
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or thousands of sensors and motors, and as many internal
neurons. This requires a relaxation in the assumption that
the neural controller is fully connected, as the number of
connections scales quadratically with the number of nodes
in a fully connected network. This raises the question then
of what the structure of the connectivity should then be for
a given robot and task. One desired form of connectivity
is structural modularity, in which certain groups of neurons
are densely connected, and there is little or no connectivity
between groups.

Previous work has investigated allowing for neural net-
works to evolve modularity if the task calls for it. In [18]
however, the number and type of modules, as well as the
connectivity pattern was predetermined.

Gruau [10] employed an indirect genotype to phenotype
mapping that allowed for the construction of neural mod-
ules. However, this method requires an evolutionary op-
erator for explicitly creating modules. In other work [5]
an evolutionary operator could duplicate existing modules.
The work presented here does not require such high-level
operators; modules emerge (or dissipate) as connectivity
density gradually increases (or decreases) over evolution-
ary time. Using a more recent indirect encoding method
[23], structural modularity—even though explicitly selected
for—failed to evolve on all but the simplest of problems [6].

In domains outside of evolutionary robotics it has been
shown that modularity can be achieved by allowing evolu-
tion to hierarchically compose independent genetic material
[27]. [25, 26] have argued that modularity evolves as a result
of directional selection acting on one part of the network,
and stabilizing selection acting on another part. This lat-
ter dynamic has been realized in a number of evolutionary
simulations [15, 12, 24]. In particular, Espinosa-Soto and
Wagner [8] showed how simple models of genetic regulatory
networks (GRNs) could evolve to become more modular if:

1. the GRNs were modeled as random boolean networks
with n nodes;

2. a biased mutation was used to keep the average incom-
ing connections to any node near to 2 or 3;

3. the GRNs were evolved to settle into point attractors
from a set of initial conditions (eg. 1010...1010 and
all strings with a Hamming distance of two or less);

4. for a uniform initial pattern across all n nodes (1010
...1010), the first k = n/2 neurons should settle into
one pattern (1010...10) and the second k neurons
should settle into the same pattern (1010...10); and



5. for a different set of initial conditions (1010...0101),
the first k neurons should settle into the same pattern
as before (1010...10) but the second k neurons should
settle into a new pattern (0101...01).

This process in effect selects for the two groups of k neurons
to settle into different attractors. The first group experiences
stabilizing selection such that the two sets of initial condi-
tions become the basin of attraction for the same attrac-
tor (1010...1010,1010...0101 → 1010...10). The second
group experiences directional selection in that it must evolve
to converge on two different attractors given two sets of ini-
tial conditions (1010...1010 → 1010...10, 1010...0101 →
0101...01).

A major assumption in [8] though is that the two groups
of k nodes are chosen a priori. In a large neural network
robot controller it is not obvious how to group the neurons,
nor how to exert directional or stabilizing selection on each
group to achieve modularity.

In this work it is shown how this assumption can be re-
laxed by modifying Espinosa-Soto and Wagner’s method:
Instead of a GRN, the random boolean network represents
a robot neural network controller, and the controllers are
evolved such that the robot performs a given task. The re-
sults show that, under the right conditions, the controllers
evolve increasing structural modularity in which certain neu-
ronal groups evolve dense connectivity, there is sparse con-
nectivity between the groups, and the user does not need to
specify the groups beforehand nor formulate explicit module-
creation evolutionary operators.

The next section describes the general methodology; sec-
tion 3 reports results from a number of experiments, in some
of which structural modularity evolved; and section 4 pro-
vides some discussion of how this approach could be scaled
up to more complex robots and tasks.

2. METHODS
This section describes the robot, its task, the controllers,
and the evolutionary algorithm.

2.1 The Robot Body
The robot employed here is a two-dimensional seven-element,
six degree-of-freedom arm and hand system. Various poses
that the arm can take are shown in Figs. 1 and 2. The
arm is composed of three segments; each of the two fingers
are composed of two segments each. Each joint connecting
neighboring units together can rotate through [−45o,+45o].

The robot may be evaluated in any of four environments,
where the goal is the same: to ’grasp’ the circular object
found in that environment by manoeuvering the finger tips
to meet its circumference. When placed any of the four en-
vironments, the robot begins in one of fifteen possible initial
conditions (ICs), giving 60 possible training environments.

The robot is evaluated in a kinematic simulator: at each
time step of simulation the desired angle is computed at each
DOF, and the joint’s angle is set to this angle at the next
time step. There is thus no concept of mass, motor strength
or momentum in the simulation.

2.2 The Controllers
The robot is controlled by artificial neural networks which
are encoded as synchronous, deterministic boolean networks,
initially introduced by Kauffman [13, 14]. A boolean net-
work can be viewed as a graph in which the nodes take
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Figure 1: The robot can be exposed to up to four en-
vironments (Env*; columns). In each environment,
the robot starts in one of fifteen possible initial con-
ditions (IC*; rows). For each environment there is
only one configuration that will allow the robot to
grasp the target object (Final; bottom row).



(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

Figure 2: Results from a typical evolved controller.
In environment 1 (a) the robot begins with initial
condition zero (Fig. 1, top left panel), shown with
a thick pale tracing. The robot then passes through
eight configurations until it touches the target ob-
ject. Each subsequent pose is shown with a darker,
thinner tracing. Circles indicate the fingertips in
contact with the object. In environments 2, 3 and
4 (b,c,d) the robot transitions through 6, 6 and 5
poses, respectively, before reaching the successful
configuration. In some of these behaviors the arm
reverses direction before settling.

binary values, and a connection between them is likewise
binary: it is either excitatory or inhibitory. In this work we
assume that a set of number of k = 2 nodes are assigned
to each of the seven mechanical degrees of freedom (DOFs),
yielding a boolean network with 14 nodes
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where x
(j)
i is the binary value of the jth node assigned to

the ith DOF.
During the first time step of the evaluation of a controller,

the nodes are treated as sensor neurons. In the second
and subsequent time steps, the nodes are treated as mo-
tor neurons. In this way the boolean network remains an
autonomous system in the sense that there is no external
influence on the network’s behavior over time. This inte-
gration of boolean networks with robots differs from that
proposed in [20], in which the robot’s sensors are connected
to a subset of the boolean nodes, and the motors are con-
nected to another, non-overlapping subset of nodes.

During the first time step of evaluation, the nodes provide
sensory information about the robot’s current environment.
The first of k = 2 nodes at each DOF indicates where the
object is (left or right), and the second node indicates the
size of the object (small or large). Thus each DOF has all
required information about the environment in which the
robot finds itself.

More specifically, if the robot is placed in environment 1
or 4 in which the object is on the robot’s left, the first of
the k = 2 nodes at each degree of freedom are set to -1

(x
(1)
∗ = −1). If the robot is placed in environment 2 or 3,

in which the object is to the robot’s right, x
(1)
∗ = +1. (In

this work the nodes take on either +1 or -1, compared to 0
or 1 as is sometimes the case in random boolean networks.)
Similarly, if the robot is placed in environment 1 or 3 in

which the object is large, x
(2)
∗ = −1. If the robot is placed

in environment 2 or 4 in which the object is small, x
(2)
∗ = +1.

It is assumed that the sensors may be noisy. So, once
the nodes have been set based on the sensory stimuli from
the environment, they may be perturbed by flipping one bit.
This leads to 15 possible initial conditions: either the sensor
readings are all correct (no bits are flipped), or one of the
14 node values is flipped.

Once the robot is supplied with information about its en-
vironment, the robot moves as follows. At each time step,
the two binary nodes assigned to each DOF are translated
into a desired angle that the joint should rotate to at the
next time step. Given the two binary nodes, there are four
possible desired angles:

x
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x
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(2)
k = +1 → +45o. (5)

In this way, the binary boolean network can specify discrete
robot poses. For seven DOFs and k = 2 nodes per DOF,
there are 47 = 16384 possible poses. Although the robot’s
motion is thus discrete, the robot’s motion could be made
more continuous by increasing k.

At the first time step, the robot is moved into the pose
dictated by the initial, (possibly perturbed) node values.
For each environment this means that there are 15 possible
initial poses; all 60 such poses are shown in Fig. 1.

The controller is updated at each time step in the standard
fashion for boolean networks:

x
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{
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∑7
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where x
(n)
m,t+1 is the new value of the nth node assigned to

the mth DOF at time step t+1, and w
(jn)
im is the connection

strength (-1 or +1) from node x
(j)
i to x

(n)
m . If no connection

exists from one node to another, w
(jn)
im = 0.

Once the new values of all nodes have been computed,
the robot moves to the new pose as dictated by the new
node values. This in effect ‘erases’ the sensory data initially
supplied to the robot. However, the robot must perform
a successful sequence of poses such that it comes to rest
with its fingertips touching the circumference of the object.
This kind of behavior—in which the robot is given an initial
snapshot of the world which it loses as soon as it starts
moving—has been explored previously in [22].

Fig. 2 shows the behavior of a typical evolved controller.
In environment 1 (Fig. 2a) the robot begins flexed com-
pletely to the left (thick pale lines) and then transitions
through several poses (indicated by increasingly thin, dark
lines) until it comes to rest in contact with the object.

As the controller is an autonomous boolean network, the
network may converge to a stable state. The pattern of
activation across the nodes may reach a fixed point, after
which the robot remains stationary as the values of the nodes
no longer change. Or, it may converge on a cyclic attractor



in which case the arm exhibits rhythmic motion. In order to
minimize computational effort, each controller was updated
until it reached a steady state, or a maximum of 12 updates
were completed.

2.3 The Evolutionary Algorithm
Each evolutionary run reported here was initialized with a
population of 10 random boolean networks of n = 14. Fol-
lowing [8], 2n = 28 excitatory and inhibitory connections
were added to each network. Each network was used to con-
trol the robot, in one or more of the 60 possible environmen-
tal conditions shown in Fig. 1. The fitness of a controller is
set to

f = (
15
∑

i=1

2
∑

j=4

(1−
DL +DR
2Dmax

))/14 (7)

where DL and DR is the distance from the left and right fin-
gertip to the circumference of the (penetrable) object when
the controller is exposed to the ith initial condition in the
jth environment, respectively, when the boolean network
settles into an attractor or 12 updates have elapsed. Dmax
is the maximum distance a fingertip can be from the circum-
ference of the object. This yields f = 0 if the fingertips are
furthest from the objects in all of the conditions in which
the controller is tested, and f = 1 if the fingertips contact
the object’s circumference in all of the conditions in which
the controller is tested.

Shaping [7, 21, 3, 4] is employed here, in which the con-
trollers are initially evolved in only one environmental con-
dition: for each controller the robot is placed in environment
1, and the network nodes are initialized with the appropriate
sensor readings without perturbation (top-left panel in Fig.
1). The controllers are evolved until one is found that suc-
cessfully brings the fingertips into contact with the object
(bottom-left panel in Fig. 1). Once a controller evolves that
succeeds in the first environmental condition, the current
controllers are re-evaluated against two conditions. Evo-
lution continues until a controller is found that succeeds in
both conditions, after which a third condition is added. This
process continues until a controller is found that succeeds in
all 60 conditions, or two hours of CPU time elapse.

Each generation is executed as follows. After all 10 con-
trollers have been evaluated, elitism is employed: the most
fit controller is copied into the next generation. Controllers
are then selected using fitness-proportionate selection, copied,
mutated, and placed in the population of the next genera-
tion until the remaining 9 slots are filled. Following [8],
each controller is mutated as follows. Each node undergoes
change with a probability of 5%. For each node u targeted
for change, the probability that a random incoming connec-
tion will be removed is computed as

p(u) =
4ru

4ru + (n− ru)
(8)

where ru represents the number of regulators (following the
terminology in [8]), or incoming connections, to node u.
With q(u) = 1 − p(u), a random incoming connection is
added instead. This biased mutation operator ensures that
nodes maintain on average 2 or 3 incoming connections. This
bias was justified in [8] by the observation that this sparse
connectivity is observed in many species.

3. RESULTS
Six sets of 500 evolutionary runs each were performed. In
the first three sets, a shaping schedule was used that added
stable attractors to the evolved controllers, and then grad-
ually widened the basins of attraction for each attractor.
This was accomplished by first evolving the controllers to
succeed in environment 1, using initial condition 1. Once a
successful controller was discovered the controllers were re-
evaluated in environment 1 using the first initial condition
for that environment (IC1, Env1 in Fig. 1), and in environ-
ment 2 using the first initial condition for that environment
(IC1, Env2 in Fig. 1). This selected for controllers that,
given two different initial conditions, converged on two dif-
ferent attractors that correspond to the two successful poses
that result in grasping the object (Final, Env1 and Final,
Env2 in Fig. 1). Once a successful controller was discov-
ered, the third environment was added (IC1, Env3 in Fig.
1), and so on.

Once a controller was found that succeeded in all four
environments, the controllers were re-evaluated in the four
environment, plus the second initial condition for environ-
ment 1 (IC2, Env1 in Fig. 1). This selected for controllers
with an expanded basin of attraction for the first attractor:
two sets of initial conditions should converge to the success-
ful pose for the environment 1. This process continues until
controllers succeed in all four environments from two initial
conditions. Then the third initial condition is added, and
so on, until controllers are discovered that succeed in all 60
conditions.

In the second three sets of runs, a shaping schedule was
used that evolved controllers to converge on one attractor,
then gradually expanded the basin of attraction for that
attractor before selecting for the ability to converge on a
second attractor. This was accomplished by first evolving
controllers to succeed starting from the first initial condition
in environment 1, as before. Once a successful controller is
found the controllers are re-evaluated twice in environment
1: once using the first initial condition and again using the
second initial condition (IC2, Env1 in Fig. 1). Once a suc-
cessful controller is re-discovered for these two conditions,
controllers are re-evaluated using the first three initial con-
ditions for environment 1, and so on.

Once a controller succeeds in all fifteen initial conditions,
the controllers are re-evaluated in 16 conditions: the first 15
initial conditions for environment 1 and the first initial con-
dition for environment 2. Evolution again continues along
this shaping schedule until all 60 conditions can be accom-
plished by a controller.

In the first and fourth sets of runs, additional constraints
were placed on the fitness of the controllers. For each condi-
tion in which a controller is evaluated, it must converge on a
point attractor in order to obtain fitness for that condition:

f = (
15
∑

i=1

4
∑

j=1

αij(1−
DL +DR
2Dmax

))/14 (9)

where αij = 1 if the controller converges on a point attractor
starting from the ith initial condition in environment j, and
αij = 0 if it fails to.

In sets 2 and 5, controllers were again constrained to settle
into an attractor in order to obtain fitness, but they could
settle into a point or any cyclic attractor. As each controller
was allocated a maximum of 12 time steps, any attractor



Table 1: Summary of evolutionary runs.
Shaping Fitness

Set schedule constraints Runs

1 Add attractors, then Only allow point 500
widen their basins attractors

2 Add attractors, then Allow point or 500
widen their basins cyclic attractors

3 Add attractors, then Allow any 500
widen their basins behavior

4 Widen attractor basin, Only allow point 500
then add new attractors attractors

5 Add attractors, then Allow point or 500
widen their basins cyclic attractors

6 Add attractors, then Allow any 500
widen their basins behavior

with a period from 1 to 12 was allowable:

f = (

15
∑

i=1

4
∑

j=1

βij(1−
DL +DR
2Dmax

))/14 (10)

where βij = 1 if the controller converges to a point or cyclic
attractor starting from the ith initial condition in environ-
ment j, and βij = 0 if it fails to.

In sets 3 and 6, controllers were not constrained to be
stable. If they settled into a point or cyclic attractor, fitness
was computed from the pose resulting from the first binary
pattern to repeat during behavior. If they did not, fitness
was computed from the pose achieved at the twelfth time
step (Eqn. 7). A summary of the experimental runs is given
in Table 1.

Fig. 2 depicts four typical evolved behaviors from one
evolutionary run from set 1. Fig. 2a shows the behavior
that results from the controller that evolved to succeed in
the first environment from the first initial condition. This
controller is shown in Fig. 3a. After further evolution a
controller emerged that succeeded in environments 1 and 2
from the first initial conditions for those environments. It is
shown in Fig. 3b, and its resulting behavior in environment
2 is shown in Fig. 2b.

Fig. 3c shows the first controller from that run to succeed
in the first three environments; Fig. 2c shows its behavior in
environment 3. Similarly, Fig. 3d shows the first controller
from that run to succeed all four environments; Fig. 2c
shows its behavior in environment 4.

As can be seen in Fig. 3, the density of connectivity
between nodes associated with the arm (the six white cir-
cles) and between those nodes associated with the hand (the
eight gray circles) gradually increases from the first to the
fourth environment. Also, the connectivity between these
two groups gradually decreases. This suggests that struc-
tural modularity is evolving: control within the arm and
control within the hand is gradually becoming more inte-
grated, but influence of the arm on the hand, and vice versa,
is lessening.

This progression can be seen more clearly in Fig. 4. The
successful controller from the first condition was extracted
from each of the 500 runs from set 1, and the fraction of
connections (excitatory or inhibitory compared to no con-
nection) was computed between each pair of nodes across
the 500 networks. The result is shown in Fig. 4a, where

(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

Figure 3: Four evolved controllers. White circles
represent arm neurons; gray circles represent hand
neurons. Gray lines indicate an excitatory or in-
hibitory connection between neurons; black lines in-
dicate a connection exists from neuron i to j as well
as a connection from neuron j to i. (a): A success-
ful controller after being evolved in environment 1.
(b) Its descendent controller which is successful in
environments 1 and 2. (c) Its descendent, which is
successful in environments 1, 2 and 3. (d) The final
controller which succeeds in all four environments;
its behavior is depicted in Fig. 2.

lighter lines indicate fewer connections between that node
pair, and darker lines indicate more connections.

This computation was repeated on the 500 controllers that
succeeded on the first two conditions, and is shown in Fig.
4b. It was again repeated on the 500 controllers that suc-
ceeded on the first three conditions (Fig. 4c) and on the 500
controllers that succeeded on the first four conditions (Fig.
4d).

Fig. 5 reports the evolutionary dynamics in the first three
sets of runs in which controllers were first evolved to con-
verge to different attractors, and then to widen the basin of
attraction for those attractors.

Fig. 5a reports the number of runs that were able to
produce successful controllers for the 60 scaffolding stages.
The four thin vertical lines within each group indicate the
incremental addition of four environments; the thick verti-
cal lines indicate the gradual addition of new initial condi-
tions to each environment. It is clear that when controllers
are forced to converge on point attractors (thick black line),
the system is highly evolvable: almost all of the 500 runs
produce controllers for all 60 conditions before two CPU
hours elapse. When either point or cyclic attractors are
allowed (medium line), evolvability significantly decreases.
When converge to an attractor is not enforced evolvability
decreases yet further (thin line).

Fig. 5b reports that, among the successful controllers
found at each of the 60 scaffolding stages, how many gener-
ations elapsed before that controller was found. The rapid
increase over the first four conditions indicates that it is rel-
atively difficult to add point attractors to an already-evolved
controller ( 12K generations for set 1), but it is much more



(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

Figure 4: Mean connectivity within evolved con-
trollers. (a) Connectivity averaged across the 500
controllers evolved to succeed in environment 1, ini-
tial condition 0 (Fig. 1, top-left panel). (b) Connec-
tivity averaged across the 500 descendent controllers
evolved to succeed in environments 1 and 2 using ini-
tial conditions 0. (c) Connectivity averaged across
the 500 descendent controllers successful in environ-
ments 1, 2 and 3. (d) Connectivity within the 500
controllers successful in all four environments.

difficult if any attractors are allowed (>20K), and extremely
difficult if the network does not need to converge on an at-
tractor at all (>40K).

For set 1 however, it is then relatively easy to widen the
four basins of attraction: only a few more 100 generations
elapse, on average, before controllers are evolved that suc-
ceed in all 60 conditions (flat black line). For set 2, it is
more difficult to widen the basins of attraction (rising mid-
dle line). For set 3, some runs make rapid progress (flat thin
line), but then become mired on local optima and make no
further progress over the remainder of the allowed time.

Fig. 5c reports the structural modularity found within
the successful controllers. It is common in the literature
(e.g. [9, 8]) to define structural modularity as the ratio
between connectivity density within clusters compared to
the connectivity density between clusters. Thus, here, the
structural modularity of a network is computed as

m =
ca,a + ch,h
ca,h + ch,a

(11)
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where ca,a is the fraction of connections that exist between
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Figure 5: Results from evolving controllers to suc-
ceed in all four environments first, and then ex-
panding their ability to handle different initial con-
ditions. Thick vertical line=new initial condition
added; thin vertical line=new environment using
that initial condition added. (a) Number of runs
(out of 500) that produced successful controllers
for each evolutionary stage. Thick line=controllers
evolved to converge on a point attractor correspond-
ing to the correct pose; medium line=controllers
evolved to converge on any attractor that corre-
sponded to the correct pose; thin line=controllers
evolved to produce the correct pose after 12 time
steps. (b) Mean generations required to discover a
successful controller. (c) Mean modularity of suc-
cessful controllers at that stage. Thin surrounding
lines denote one unit of standard error of the mean.

each pair of nodes in the arm, ch,h is similarly the connec-
tivity density with the hand, ca,h is the connectivity density



between each node in the arm to each node in the hand,
and ch,a is the connectivity density between each node in
the hand to each node in the arm. Thus m >> 1 indicates
the presence of structural modularity: there is significantly
greater connectivity density with the arm and within the
hand than there is between the two body parts.

As can be seen in Fig. 5c, modularity increases signifi-
cantly in all three sets as the controllers evolve to succeed
in all four environments. However, modularity increases sig-
nificantly more when point attractors are selected for. In all
three sets, modularity then increases slightly as the basins
of attraction (or convergence to the correct behavior for set
3) are widened. For set 1, modularity rises such that by the
end of the runs the average connectivity within body parts
is nearly 2.5 more dense that it is between body parts.

When networks are first evolved for large basins of attrac-
tion around a single attractor, after which more attractors
are added (sets 4,5 and 6), the evolutionary dynamics are
quite different. Fig. 6a shows that for all three sets, the
runs are less evolvable: fewer runs (compared to Fig. 5a)
complete before the maximum allowed time elapses. Thin
vertical lines now represent the addition of new initial condi-
tions to an environment in which the controllers have already
succeeded, and thick vertical lines indicate the addition of
new environments to the controllers’ training set.

Fig. 6b shows the reason for this decrease in evolvability.
Controllers rapidly evolve to succeed for all 15 initial condi-
tions of environment 1, but then a significant period of time
is required to further evolve them to succeed for just one
initial condition in environment 2. This pattern is repeated
at the transition from two environments to three, and so on.

Fig. 6c shows that modularity does not emerge during
the expansion of the first basin of attraction, but does rise
during the transition from successful behavior in one envi-
ronment to successful behavior in two environments. There
is again no change in modularity until controllers are evolved
to succeed in three environments. After succeeded in all four
environments, in set 1 there is a significant increase in modu-
larity as the basin of attraction for this new, fourth attractor
is widened. As in the first scaffolding schedule, significantly
more modularity evolves when point attractors are selected
for, compared to the two less restrictive fitness functions.

4. ANALYSIS AND CONCLUSIONS
This work demonstrates that structural modularity may arise
in robot controllers under the right conditions. This ap-
proach does not require building modules in a priori for
evolution to make use of [18], nor does it require explicitly
bringing selection pressure to bear differently on different
parts of the network [8]. Also, it does not require that ex-
plicit evolutionary operators be added that create modules,
as is the case in indirect or recursive genotype-to-phenotype
mappings [10] in which duplication of phenotypic structures
is common. Figs. 5 and 6 make clear that particular kind
of dynamics—in this, the convergence to point attractors—
greatly influence the amount of modularity that arises. This
suggests that it may be easier to evolve modularity in dy-
namical systems, compared to systems that do not have their
own intrinsic dynamics (as were employed in [12]), but this
conclusion requires further evidence. The explanation for
why structural modularity arises in the controllers describe
here derive not just from their dynamics, but because of the
structure of the tasks. Here, as in [8], different selection
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Figure 6: Results from evolving controllers to suc-
ceed in each of the 15 initial conditions for envi-
ronment 1 first, and evolving them further to suc-
ceed in the other three environments. Thin verti-
cal line=new initial condition added; thick vertical
line=new environment using the first initial condi-
tion added.

pressures come to bear differently on different parts of the
network. For pairs of conditions in which the same-sized
object is placed on the left or right, the arm should behave
differently (rotate to the left or right), while the arm should
exhibit the same posture. For pairs of conditions in which
differently-sized objects are placed all on the same side of the
robot, the arm should behave the same (rotate to that side),
but the arm should behave differently. This causes evolution
to favor adaptive dissociation between the arm nodes and
the hand nodes so that they may act independently under
different conditions. Presumably, selecting for larger basins
of attraction toward a given attractor further increases mod-
ularity because greater connectivity within these groupings
is favored: connections between nodes within a group can
help correct for sensor noise.

Much work remains to be done to investigate under what
conditions structural modularity arises in robot controllers.



First, the system as described here will be re-run for different
placements and sizes of objects to determine which condi-
tions favor modularity and which do not, and to verify that
the proposed method discovers non-modularity controllers
for the former cases and modular controllers for the latter
cases. Second, the importance of the biased mutation oper-
ator (Eqn. 8) will be investigated: it is possible that this
operator may keep networks close to the critical regime [14,
2], and that this regime more easily admits the addition of
attractors and the expansion of their basins of attraction [1].
Third, robot controllers cannot remain autonomous dynam-
ical systems: in order to perform complex tasks robots must
be able to continuously sense their environment. This will
require maintaining the desirable properties of this approach
while transitioning to drive dynamical systems. This may
require the use of shaping techniques [7, 21, 3, 4] in which
robots gradually sense more of their environment, for longer
periods of time, than their ancestors did. The motor system
of the robots will likewise have to be enhanced. Finally, a
better coupling between a binary controller and a robot op-
erating in a continuous environment must be investigated.
This may require assigning increasing numbers of groups of
binary nodes to sensors and motors, rendering some of the
discrete aspects of random boolean networks continuous, or
some combination of the two approaches.
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