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Innocent Until Proven Guilty: Reducing Robot
Shaping from Polynomial to Linear Time

Josh C. Bongard

Abstract—In evolutionary algorithms, much time is spent eval-
uating inferior phenotypes that produce no offspring. A common
heuristic to address this inefficiency is to stop evaluations early
if they hold little promise of attaining high fitness. However, the
form of this heuristic is typically dependent on the fitness function
used, and there is a danger of prematurely stopping evaluation
of a phenotype that may have recovered in the remainder of
the evaluation period. Here a stopping method is introduced
that gradually reduces fitness over the phenotype’s evaluation,
rather than accumulating fitness. This method is independent of
the fitness function used, only stops those phenotypes that are
guaranteed to become inferior to the current offspring-producing
phenotypes, and realizes significant time savings across several
evolutionary robotics tasks. It was found that for many tasks,
time complexity was reduced from polynomial to sublinear time,
and time savings increased with the number of training instances
used to evaluate a phenotype as well as with task difficulty.

Index Terms—Early stopping, evolutionary robotics.

I. Introduction

ONE OF THE main criticisms raised against stochastic
optimization in general and evolutionary algorithms in

particular is that they are computationally inefficient. Most
phenotypes turn out to be inferior to the current set of
offspring-producing phenotypes. This is particularly true in
rugged fitness landscapes, in which phenotypes occupying
narrow fitness peaks mostly produce inferior offspring pheno-
types that fall on nearby slopes; evolutionary algorithms are
designed to perform well in rugged landscapes because other,
mostly deterministic optimization methods become trapped
on the many local optima. However, in many applications of
evolutionary algorithms, the evaluation of a single phenotype
takes a significant amount of time, to the point where heuristics
are often employed to stop the evaluation of failing phenotypes
early.

In some cases, a domain-specific heuristic is employed to
terminate the evaluation of phenotypes early if there is no
chance that they will recover fitness later in the evaluation.
In evolutionary robotics [1], [2], for instance, in which the
controllers (e.g., [3]), or the morphologies and controllers
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(e.g., [4]–[6]) of simulated robots are optimized, a single
evaluation can require significant computation time. In this
domain, phenotype evaluation is often terminated early if a
legged robot falls down and is not equipped to right itself [7],
[8] or fails to move during some interval [4], [9].

However, for many complex tasks it is non-trivial to deter-
mine whether a phenotype may have recovered fitness in the
remaining evaluation time: for example in some situations an
immobile robot with a recurrent neural network controller may
spontaneously begin moving again. In this paper, an early stop-
ping method is introduced that is domain independent and only
stops phenotypes guaranteed to have remained inferior even if
they had been evaluated fully. This method involves gradually
reducing fitness over evaluation time from some theoretical
maximum, rather than accumulating it. Once fitness falls below
the worst of the current offspring-producing individuals in the
population, its evaluation can therefore safely be terminated.

A related technique in evolutionary robotics employed to
reduce computation time is robot shaping [7], [10]–[15], in
which initial robots are evaluated in one task environment,
and their descendants are evaluated in a growing number of
task environments. However, although this may save time com-
pared to evaluating all robots in all task environments, it alters
the time complexity of the evolutionary algorithm. Assuming
that the number of generations required to evolve a robot that
behaves successfully in each new task environment is constant,
the time to discover a robot that can behave successfully in
k task environments increases at least polynomially with k, if
learning task k can influence the robot’s ability to maintain the
first, second, . . . and k − 1th task. For example once a robot
learns one task, that robot’s progeny must be evaluated twice:
once to assess its ability to perform the new task, and a second
time to assess its ability to still perform the first task. It is
important to note that the algorithm scales polynomially from
the point of view of cumulative time: the time to learn two
behaviors includes the time to evaluate the first generations of
robots against the first task plus the time required to evaluate
their progeny against both tasks. Shaping is employed in the
work presented here, and it is shown that early stopping
accrues increased time savings as the number of task environ-
ments in which robots are evaluated increases, and in some
cases reduces the search from polynomial to sub-linear time.

Besides computational inefficiency, evolutionary algorithms
often suffer from premature convergence. Several broad ap-
proaches to guarding against premature convergence exist in
the literature. Niching methods [16]–[19] attempt to restrict

1089-778X/$26.00 c© 2010 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 1. A sample evolved locomoting robot. A typical robot that has evolved to successfully approach objects placed at 12 different locations in an arc in
front of it. The upper and lower rows show its behavior when the object is placed at the extreme left-hand and right-hand endpoints of that arc, respectively.

mating to maintain diversity, while novelty-based metrics
explicitly or implicitly reward phenotypes not only for gains
in fitness, but also for exhibiting uniqueness compared to other
members of the population [20]–[22]. Meta-algorithms [23],
[24] evolve the evolutionary mechanisms of the algorithm
itself, so that convergence in a population is a trait at the meta-
level that can be selected against. Recently, several techniques
for reducing the probability of becoming trapped at local op-
tima have been introduced [25]–[28]. However, in all of these
approaches, the resulting evolutionary algorithms run for much
longer: they continue to search even after discovering local
optima. These approaches would therefore benefit greatly from
early stopping methods that accelerate the search process itself.

The next section describes the conditions necessary to apply
the early stopping method to any evolutionary algorithm.
Section III introduces the robot tasks, evolutionary algorithm
and early stopping method itself. Sections IV–VI provide
results, discussion, and concluding remarks, respectively.

II. Necessary Conditions for Employing

Early Stopping

Before introducing the details of early stopping, an evo-
lutionary algorithm may make use of early stopping if the
following conditions hold.

Multiobjective optimization must be employed, and only
those candidate phenotypes that are non-dominated can pro-
duce offspring. This is necessary because if a candidate
phenotype becomes dominated before its evaluation is finished,
evaluation of that phenotype can be terminated early because
it is guaranteed that it will not produce offspring.

The fitness function must be strictly non-increasing. At
the outset of a phenotype’s evaluation its fitness is set to
a maximum value, and at each time step of its evaluation
fitness stays the same or decreases. This ensures that once
a candidate phenotype becomes dominated during evaluation,
it cannot become non-dominated again as a result of its fitness
increasing later during evaluation.

Fitness may be summed, averaged, or the minimum value
may be taken over an evaluation period in which a fitness value
is computed at each time step. It should be assumed that if k

of n total time steps have been evaluated so far then fitness
will be maximal for time steps k+1, k+2, . . . , n. This ensures
that if fitness is summed, averaged or the minimum value is
taken over the entire interval the statistic will either stay the
same or decrease as evaluation continues.

III. Methods

This section describes the two simulated robots used in this
paper, as well as the evolutionary algorithm used to evolve
behaviors for them. The evolutionary algorithm incorporates
two existing mechanisms known to increase the probability
of discovering good phenotypes: shaping [7], [10]–[15], and
multiobjective optimization [29]. The section concludes by
introducing a new mechanism, early stopping, which greatly
increases the speed of evolutionary computation.

A. The Robots

To investigate the generality of the performance impact
of early stopping, two robots are employed in this paper. A
quadrupedal robot was evolved to locomote toward objects
placed at different positions (Fig. 1), and an anthropomorphic
arm was evolved to manipulate objects of different shape, size,
and position (Fig. 2). All of the robots were evolved in the
open dynamics engine physics engine. The simulator uses an
Euler method with discrete timesteps, and during each time
step of a robot evaluation the robot’s sensors are updated; the
artificial neural network controlling the robot is updated once;
outputs from the networks are used to determine the desired
angle of the joints; and torque proportional to the difference
between the desired and actual angle at each joint is applied
to the objects connected by that joint. All of the internal and
external forces acting on each object are then added and used
to calculate the new position and velocity of the object.

1) Quadruped: The quadruped is composed of six body
parts connected by five actuated, two degree-of-freedom
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Fig. 2. A sample evolved arm robot. This robot can successfully grasp, lift, and actively distinguish between spheres of different sizes [(a)–(d) radius = 35
cm, (e)–(h) r = 31.5 cm], cylinders of difference sizes [(i)–(l) r = 35 cm, length = 70 cm, (m)–(p) r = 31.5 cm, l = 63 cm), and cubes of different sizes
[(q)–(t) l, w, h = 70 cm, (u)–(x) l, w, h = 63 cm). Black and white finger segments indicate segments in which the tactile sensor is on or off, respectively.
White lines denote the range sensors. Videos of this and other robots can be found on the author’s website.
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(DOF) rotational joints. Each DOF is composed of a rotational
joint and an actuator: the actuator causes the two body parts to
rotate relative to one another through some pre-defined plane;
the joint acts as the fulcrum. The upper and lower 2×1×0.25
m trunks are connected by a joint which rotates the parts
through the sagittal and coronal planes. The joint rotating
through the coronal plane can sweep through [−50°, 50°],
the joint rotating through the sagittal plane can only sweep
through [−10°, 10°]. The four 0.1 × 1 m legs are attached to
their respective trunks by joints that also rotate through the
sagittal and coronal planes: rotation through the coronal plane
is restricted to [−50°, 50°] and rotation through the sagittal
plane is restricted to [−20°, 20°]. These joint ranges ensure
that the robot keeps its center of mass close to the ground plane
and precludes the danger of tipping over. Further, the wide
range of horizontal motion facilitates turning during motion.

The robot is equipped with a continuous time recurrent
neural network (CTRNN) [30], a common neural network
architecture in evolutionary robotics. It is also equipped with
seven sensors: four tactile sensors in each leg, and three
distance sensors embedded in the left and right shoulders as
well as at the robot’s midpoint. The tactile sensors return
1 if the leg is in contact with the ground plane or target
object, and −1 otherwise. The distance sensor returns a value
commensurate with the distance of the sensor from the target
object. If the distance sensor is greater than 10m from the
target object it returns 0; if it is co-located with the object’s
center (an impossibility) it returns a 1; and for intermediate
distances it returns a value in [0, 1]. The CTRNN contains
ten neurons that output values to the ten motors which in
turn control the five, two DOF joints. Motors receive a value
in [0, 1] from the CTRNN; this value is then scaled to a
value in the joint’s range and treated as a desired angle. Torque
is then applied to the joint proportional to the difference
between the joint’s current and desired angle. At each time
step of the simulation the positions, orientations, rotational
and linear velocities of each object are updated based on the
internal (joint torques) and external (gravitational, inertial, and
frictional) forces acting on them. The value of each motor
neuron is also updated each simulation time step according
to

τiy
′
i = −yi +

m∑
j=1

wjiσ(yj − θj) +
sd+st∑
j=1

njirj (1)

where τi is the time constant associated with neuron i, yi is
the value of neuron i, m is the number of motor neurons
(m = 10), wji is the weight of the synapse connecting neuron
j to neuron i, σ(x) = 1/(1 + e−x) is an activation function
that brings the value of neuron i back into [0, 1], θj is the
bias of neuron j, sd is the number of distance sensors, st is
the number of tactile sensors, nji is the weight of the synapse
connecting sensor j to neuron i, and rj is the value of sensor
j. In this formulation, each sensor may have a direct effect on
every motor neuron. However this effect may be minimized
or eliminated by low values for r, or by behaviors that cause a
motor neuron to saturate to extremal values. τi can range be-
tween [0.0001, 1.0], wji in [−16, 16], θi in [−4, 4], and nji in
[−16, 16].

Objects are placed at various locations distal to the robot
and it is evolved to locomote toward them. Twelve different
placements are used here. The object can be placed at any one
of 12 evenly-spaced points on an arc extending in front of the
robot; the arc originates at [10sin(−π/4), 0, 10cos(−π/4)] and
terminates at [10sin(π/4), 0, 10cos(π/4)] (the robot’s center
is placed at the center of the simulation’s coordinate frame
[0, 0, 0]). The placement points are therefore
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and ensure that the object is always placed 10 m from the
robot, and that some placements select for leftward, rightward,
or forward locomotion.

2) The Arm: In addition to the quadruped, an anthropo-
morphic robot arm was also employed here as such robots
have been studied in evolutionary robotics in the past [31]–
[33], and object manipulation allows for the evolution of more
diverse behaviors than simple legged locomotion. The robot
arm is comprised of a trunk, upper and lower arm, wrist, hand
and four fingers containing three phalanges each (Fig. 2). The
robot is therefore made up of 4 + 4 × 3 = 16 body parts.
Like the quadruped, each joint is actuated by a one degree of
freedom rotational joint, with the exception of the shoulder
joint, a two-DOF actuated rotational joint, and the wrist joint,
a three-DOF actuated rotational joint. This gives a total of
6 + 4 × 3 = 18 DOFs. If we define the robot’s long axis to
be the vector that passes from its shoulder through its hand,
then the shoulder becomes its posterior point and its hand its
anterior point. The sagittal plane is then the vertical plane
that cuts through the length of the arm, the coronal plane the
horizontal plane that cuts through the length of the arm, and
the transverse plane a horizontal plane perpendicular to the
sagittal and coronal planes. The arm may be presented with
six different objects placed at two different positions. Details
regarding the physical characteristics of the objects as well as
the robot’s body parts and joints are provided in Table I.

In previous work [34], it was found that evolving aspects
of the robot’s morphology along with its control improves
the probability of evolving successful robots. For this reason,
along with the controller’s parameters the length of each
phalange is evolved to any value in the range [0.01 m, 0.6 m],
the radius of each phalange is evolved to any value in the
range [0.015 m, 0.3 m], and the relative spacings between any
pair of fingers i and i+ 1 may change to any angle in [−π, π].

Each robot is equipped with three binary tactile sensors
per finger, one for each phalange, and an additional one
in the hand. Each phalange is also equipped with a range
sensor (indicated by the white lines in Fig. 2). A range sensor
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TABLE I

Physical Parameters of the Target Objects and the Anthropomorphic Robot Arm

1-5Part Length Height Width Mass
Large sphere [S] 0.35 m 1 kg
Large cylinder [Y] 0.35 m 0.7 m 1 kg
Large cube [C] 0.7 m* 0.7 m 0.7 m 1 kg
Small sphere [s] 0.315 m 1 kg
Small cylinder [y] 0.315 m 0.63 m 1 kg
Small cube [c] 0.63 m* 0.63 m 0.63 m 1 kg
Trunk [Tr] 0.05 m 2.0 m 1 kg
Upper arm [Ua] 0.1 m 1.0 m 1 kg
Fore arm [Fa] 0.1 m 1.0 m 1 kg
Hand [Ha] 0.25 m 1 kg
Proximal phalanges [Pp] 0.075 m 0.3 m 1 kg
Intermediate phalanges [Ip] 0.075 m 0.3 m 1 kg
Distal phalanges [Dp] 0.075 m 0.3 m 1 kg
Joint Min Max Plane of rotation
Shoulder [Tr][Ua] −30° 30° Sagittal and coronal
Elbow [Ua][Fa] −30° 30° Coronal
Wrist [Fa][Ha] −30° 30° Sagittal, coronal and transverse
Metacarpophalangeal [Ha][Pp] −90° 90° Relative to finger
Proximal interphalangeal [Pp][Ip] −60° 60° Relative to finger
Distal interphalangeal [Ip][Dp] −60° 60° Relative to finger

* = length.

returns a value between zero and one commensurate with the
distance of the ray emitted by the sensor. This differs from
the adirectional distance sensor described for the quadruped
above, which can be thought of as a sound or light sensor
that responds proportionally to light or volume, respectively.
The shoulder contains a proprioceptive sensor that measures
the sagittal rotation of the arm: positive values indicate the
arm is raised; values near zero indicate the arm is horizontal;
and negative values indicate the arm is rotated downward.

As for the quadruped, the arm is controlled by a CTRNN
where each of the 18 motor neurons and 3 hidden neurons
(m = 21) are updated at each simulation time step using

τiy
′
i = −yi +

m+3∑
j=1

wjiσ(yj − θj) +
sn+st∑
j=1

njirj (2)

where sr is the number of distance sensors, st is the number
of tactile sensors, and all other parameters and their allowable
ranges are described for (1). Three additional hidden neurons
are incorporated for allowing the robot to actively distin-
guish between different objects. This mechanism is described
in more detail when the fitness functions are introduced
in Section III-B.

The tactile sensors in both robots are noisy: at each time
step, for each tactile sensor, the true value is flipped to the
incorrect value with 1% probability. No noise was added to
the other sensors or motors.

B. Fitness Functions

The fitness functions for evolving locomotion in the
quadruped and object manipulation in the arm follow a similar
form

f1 =

∑e
i=1

∑t
j=1 H(i, j, 1)

et
, . . . , fk =

∑e
i=1

∑t
j=1 H(i, j, k)

et
(3)

where f1, . . . , fk are k separate objectives that the robot must
maximize, e is the number of environments in which a robot is
evaluated, t is the maximum allowed time steps per evaluation,
and H(i, j, k) indicates a function corresponding to objective
k that transforms the values of the robot’s sensors at time
step j into a value in [0, 1] when the robot is evaluated in
environment i. This formulation ensures that the fitness of the
robot is only expressed as a function of its sensor values so
that if such experiments were performed by physical robots no
external instruments would be required to assess the robot’s
fitness. Also, the normalization ensures that fitness objectives
range from zero for worst fitness to 1 for the theoretical
maximum fitness.

Either robot may be evaluated in one or more environments,
up to a maximum of 12 in this paper. For the quadruped,
each task environment contains an object placed in a different
location. The robot arm may be presented with six different
objects (Table I) placed at two different positions each: either
directly below and slightly to the left of the hand, or below
and slightly to the right.

The fitness objectives for the quadruped are therefore de-
fined using H(i, j, 1) = r1,i,j , H(i, j, 2) = r2,i,j , and H(i, j, 3) =
r3,i,j , where rd,i,j indicates the value of the dth distance
sensor at time step j when evaluated in environment i. This
fitness function has the effect of selecting for behaviors which
minimize the distances between the distance sensors and the
object, thereby bringing the robot into proximity of the target
object; each robot is evaluated for 1000 time steps in each of
12 environments.

The first fitness objective for the robot arm selects for
grasping and is defined as

H(i, j, 1) = G(i, j) =

∑sn

n=1 rn,i,j

sn

(4)
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where rn,i,j indicates the value of the nth range sensor
during the jth time step when the robot arm is evaluated in
environment i. Fitness objective G therefore selects for
grasping: it selects for strategies that maximize the mean
values of the sn = 12 range sensors, thereby selecting for the
closing of the fingers around the target object as tightly and
rapidly as possible.

The second fitness objective for the robot arm selects for
active categorical perception and is defined as

H(i, j, 2) = A(i, j) =
12∑
n=1

⎧⎨
⎩1 −

√∑3
h=1(yh,i,j − yh,n,j)2/

√
3 : S(i) = S(n)√∑3

h=1(yh,i,j − yh,n,j)2/
√

3 : otherwise

12
(5)

where yh,i,j is the value of the hth hidden neuron at time step
j when evaluated in environment i, and S(i) returns the shape
of the object in environment i. This fitness function is adapted
from [33], and selects for behaviors that generate similar time
signatures across hidden neurons when the robot interacts with
objects of the same shape, but diverging hidden neuron time
signatures when presented with objects of different shape.
This is accomplished by recording the hidden neuron values
during each time step and during each evaluation of a robot,
minimizing the Euclidean distance between hidden neuron
values across evaluations using objects of the same shape, and
maximizing this distance between evaluations using objects of
different shape.

The third fitness objective for the robot arm selects for
lifting and is defined as

H(i, j, 3) = L(i, j) =

((
st∑

t=1

rt,i,j

)
> 0

)
rp,i,j (6)

where rt,i,j indicates the value of the tth tactile sensor dur-
ing the jth time step when the robot arm is evaluated in
environment i, and rp,i,j indicates the angle reported by the
proprioceptive sensor in the shoulder at time step j during
evaluation in environment i. Fitness objective L therefore
selects for lifting: it selects for behaviors that keep at least
one phalange and/or the palm in contact with the target object
while lifting the arm by rotating upward through the shoulder.
The robot can evolve a control policy that allows it to lift
without grasping the object firmly: for example in many runs
in which only lifting was selected for, the robot would touch
the object with the tips of two or three fingers and then lift it.

Multiobjective optimization [29] is used to evolve robots
capable of meeting all three of these criteria. Within the
evolving population, evaluated phenotypes are divided into
dominated and non-dominated phenotypes. A phenotype m

is dominated if there exists another evaluated phenotype n

in the population that has a higher value across all of the
fitness objectives. Only non-dominated phenotypes are allowed
to produce offspring; dominated phenotypes are replaced by
those offspring.

C. Shaping

As has been shown previously in other domains within
[35], [36] and outside of [37], [38] evolutionary algorithms,
gradually expanding the set of training instances against which
phenotypes in a population are evaluated can increase the
probability of finding a good phenotype compared with simply
evaluating every phenotype against an entire training set.
This principle is known as robot shaping [7], [10]–[15] in
robotics, and is derived from the concept of scaffolding in
developmental psychology [39] and active learning [37], [40],
[41] in machine learning.

Shaping is employed here by initiating each evolutionary
run by randomly choosing an environment and evolving
the population until a phenotype is found that successfully
accomplishes the task in that environment. Thus tasks are
defined here as environments in which the robot must act
appropriately: we do not consider tasks that can be performed
in parallel. Success is defined as a phenotype obtaining a value
for each of its fitness objectives above a defined threshold. For
the quadruped, the thresholds are set to f1 = 0.5, f2 = 0.4, f3 =
0.5: f2 is set slightly lower because this distance sensor,
embedded at the midpoint of the robot, cannot approach the
object as close as the sensors embedded in the shoulders. The
thresholds for the robot arm were set to f1, f2, f3 = 0.85.
Once success is achieved, another environment is added to the
training set at random, and evolution continues: phenotypes are
now evaluated in both environments. This process continues
until a maximum time limit of 30 CPU hours is reached or a
phenotype is found that succeeds in all 12 environments.

The success threshold values were empirically established,
but it was found that other settings did not affect the results
reported below significantly (results not shown). Lower values
increase the number of runs that successfully finish before
the time limit, and reduce the mean time to completion for
those that do; higher values reduce the number of independent
runs that finish before time, and increase the time to do so for
those that do.

D. Early Stopping

It is common knowledge that the majority of phenotypes
produced by evolutionary algorithms as a result of mutation
and/or crossover of their underlying genotypes perform sig-
nificantly worse than their parent phenotypes. This majority
can be tuned, but typically a majority of worse performers is
desired. For phenotypes that take time to evaluate it would be
useful to have a mechanism for terminating poorly-performing
phenotypes early. However, this mechanism should not pre-
clude the possibility of prematurely stopping phenotypes that
may make up for early underperformance in the latter part of
the evaluation. For example, a robot arm that drops an object
at the outset may suddenly snatch it up near the end of its
evaluation and actually perform better than a parent that began
grasping early but never attained a firm grip.

This paper presents an early stopping method that meets
both of these criteria: it terminates phenotypes early that would
be unable to outperform their parents even if they were run to
completion. This is accomplished by starting each phenotype



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BONGARD: INNOCENT UNTIL PROVEN GUILTY: REDUCING ROBOT SHAPING FROM POLYNOMIAL TO LINEAR TIME 7

Algorithm 1

procedure EarlyStopping()

1: for i = 0 to 11 do
2: for k = 0 to 2 do
3: f (i, k) ← max(k)
4: end for
5: end for
6: i ← 0
7: d ← 0
8: while (i < 12) & (!d) do
9: j ← 0

10: while (j < 1000) & (!d) do
11: H(i, j, k) ← evaluate(i, j)
12: for k = 0 to 2 do
13: f (i, k) ← f (i, k) − H(i,j,k)

1000
14: end for
15: d ← dominated(mean(f ))
16: j ← j + 1
17: end while
18: i ← i + 1
19: end while

with the maximum obtainable fitness and subtracting value at
each time step, rather than beginning with zero fitness and
accumulating value at each time step. More specifically, this
involves setting all fitness objectives fi to their maximum
possible value and ensuring that the associated Hi function
returns negative values at each time step, rather than starting
with fi = 0 and Hi returning positive values [see (3)].

This paper reports the results of using two types of early
stopping. The first stops the evaluation of a phenotype before
the 1000 time steps elapse, referred to as within stopping. The
other may stop a phenotype between evaluations in different
task environments, referred to as between stopping. Both
mechanisms may be used in isolation or in concert, but rely
on the same principle. Pseudocode is given in Algorithm 1.

Algorithmically, this involves computing the fitness for
a phenotype as follows: the first block (1–5) initializes
each of the k fitness objectives for all i environments, and
the second block (6–19) evaluates a single phenotype, but
stops evaluation early if the current phenotype becomes
dominated by another already-evaluated phenotype in the
population. max(k) returns the maximum threshold value for
fitness objective k, the outer while loop (8–19) evaluates the
phenotype in different environments, the inner while loop
(10–17) evaluates the phenotype time step by time step in
the current environment, evaluate(i, j) evaluates the robot
in environment i at time step j, the inner for loop (12–14)
gradually degrades the fitness objectives of the robot away
from their original maximal values, mean(f ) returns a vector
of length three that contains the mean values of each column,
thereby reporting the performance of the robot on each
objective up to the current time step, and dominated(. . .)
indicates whether the current robot is dominated by some
other already-evaluated robot in the population.

When a robot is evaluated against a training set of two or
more environments, it is evaluated in them in order of recency:

it is evaluated against the object most recently added to the
training set; if it is not yet dominated (line 8), it is evaluated
against the object second-most recently added to the training
set; and so on. This sequence is employed because it is likely
that a robot will perform most poorly against the most recent
object, and therefore have the highest chance of becoming
dominated at this point, precluding its evaluation against the
remaining objects in the training set.

E. Genetic Algorithm

When early stopping is employed, the time to evaluate
different robots varies greatly: phenotypes that reach the non-
dominated Pareto front are evaluated for each time step in
all of the current training environments, while dominated
phenotypes are only evaluated for part of the time in a subset
of these environments. For this reason, it is desirable to use
a steady state genetic algorithm and distribute evaluation over
computational nodes working in parallel. While one node
evaluates what is to become a non-dominated phenotype, a
second node may evaluate several dominated phenotypes in
sequence without having to wait for the first node to complete.

Each run begins with a population of 200 randomly-
generated genomes, and is distributed across four computa-
tional nodes: the first executes the GA while the remaining
three evaluate robots in parallel. Once assigned a robot, a
computational node evaluates the robot in the training environ-
ments in sequence: because a robot may not be evaluated in
all of the training environments, it would be computationally
inefficient to further parallelize the algorithm by evaluating
each robot in different environments simultaneously.

While the first node waits for a robot’s fitness to be
returned by the computational nodes, a non-dominated and
dominated phenotypes are chosen, both at random: a mutated
copy is made of the non-dominated phenotype and overwrites
the dominated phenotype. Mutation involves mutating each
CTRNN parameter (and morphological parameter for the robot
arm) with a probability of 0.05. If a parameter is mutated, the
value is replaced with a new random value chosen with a
gaussian distribution such that the mean of the distribution is
equal to the original value and the variance is equal to the legal
range for that parameter. If the new value falls outside the legal
range, it is thresholded to its minimum or maximum value.

When a computational node returns a non-dominated phe-
notype, the population’s Pareto front is recalculated. If a node
returns a phenotype that succeeded in all of the current i task
environments, a new task environment is chosen at random,
the current non-dominated phenotypes are re-evaluated against
the i + 1 environments, the Pareto front is recalculated, and
evolution then continues. If 30 h of CPU time elapse on the
first node, or a phenotype is found that succeeds in all 12
environments, the run terminates.

IV. Results

One hundred independent runs were conducted with the
quadruped robot, and 7 × 100 = 700 runs were conducted
with the robot arm. Within each of the seven sets of 100 runs
with the robot arm, one or more of the fitness objectives G,
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Fig. 3. Typical evolutionary trajectory when selecting for object manipulation. (a) Fitness change. (b) Change in front membership. (c) Average objects
evaluated per genome. (d) Average time steps evaluated per genome. A sample run drawn from experiments in which the robot arm was evolved to grasp,
actively distinguish between and lift 12 objects. (a) reports the best (black line) and mean (gray line) fitness in the population over the length of the run.
The three objectives were collapsed to a single fitness value (f = G × A × L) for the sake of clarity: this run was drawn from a multiobjective run in which
grasping, active perception, and lifting served as the three objectives to maximize. Vertical lines indicate the time at which a phenotype was found that could
successfully manipulate n − 1 objects, triggering the inclusion of an nth object (numbers in the figure panel) in the training set. (b) reports the number of
phenotypes occupying the Pareto front. (c) reports the mean number of objects evaluated for each phenotype. The horizontal gray lines indicate how many
objects would be evaluated if early stopping between object evaluations were not used. (d) reports the mean number of time steps (out of 1000) evaluated
per phenotype.

A or L were used. In the sets of runs in which only one
fitness objective was used, the run collapsed to a uni-objective
optimization, with only one phenotype in the population
occupying the Pareto front at any one time. In the set of
runs employing two or more fitness objectives, the run was
multiobjective with one or more points occupying the Pareto
front.

Fig. 3 reports the evolutionary trajectory of a successful run
for the robot arm in which all three fitness objectives were
selected for. A successful run is defined as a run in which a
phenotype is found that succeeds in all of the task environ-
ments before the maximum time limit is reached. A robot that
could successfully grasp, actively distinguish between and lift
all 12 objects was found after almost 24 h of CPU time had
elapsed. It can be seen that robots able to manipulate the first
five objects were discovered relatively rapidly, but the sixth
object presented a significant challenge [Fig. 3(a)]. Despite
this, the best phenotype in the population (black line) was
just shy of the success thresholds (G, A, L = 0.85) for over

five CPU hours. Indeed from five CPU hours onward, there
was always at least one phenotype very close to the success
threshold.

Fig. 3(b) reports the membership size of the Pareto front
for the same run. As can be seen, membership gradually
decreases over time as phenotypes cluster ever nearer to the
success threshold. When a new object is added the front
enlarges as different strategies for manipulating the new object
proliferate, but the front membership then decreases again as a
few phenotypes converge on and eventually meet the success
thresholds.

Fig. 3(c) reports the mean number of environments in which
each robot was evaluated (black line). Values less than the
total number of environments in the current training set (gray
horizontal lines) indicate the workings of between stopping.
It can be seen that the average number of environments in
which the robots are tested spikes just after a new object is
added to the training set. This can be explained by the fact
that robots are not yet adept at manipulating the recently-
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introduced object, so therefore a newly-generated robot has
a high probability of outperforming members of the current
Pareto front. If it is still non-dominated after evaluation against
the new object, there is a high likelihood that it has retained or
only slightly adapted its behavior for manipulating the older
objects in the training set, and so will most likely be evaluated
on many of the older objects. As time passes the population
improves on its ability to manipulate the new object as well
as the old ones. If a deleterious mutation is introduced into a
newly-generated robot, it is more likely to undermine its ability
to manipulate the new object than the older objects (data not
shown), so the newly-generated robot is often stopped during
evaluation of the new object. Thus, some time after a new
object has been added, the mean number of evaluations per
genome drops drastically and remains there until a new object
is added to the training set.

Most notably, the mean number of environment evaluations
does not seem to rise with the number of environments in
the training set. A similar pattern is observed in Fig. 3(d),
which reports the mean number of time steps evaluated per
robot, per environment. Values less than 1000 reflect the use
of within stopping. However, there is no consistent rise in
the fraction of time employed for evaluating a robot, with
perhaps the exception of a seeming rise from 15 CPU hours
onward.

A. Performance Impact of Early Stopping

Fig. 4 reports the relative difficulty of the eight tasks. As can
be seen, when both active categorical perception and lifting are
selected for, less of the runs within those regimes finish in the
allotted time, and for that do, they take significantly longer
than the mean time to completion for the other tasks.

Fig. 5 reports the empirical time complexity for the algo-
rithm when both within and between stopping are employed
(dark triangles) for all eight of these tasks. This is computed
by extracting all successful runs from the 100 runs that were
conducted and averaging the times across these runs in which
phenotypes were found for environment set k, where in this
paper k = 1, 2 . . . 12. Rather than running additional algorithm
variants in which either within, between or both within and
between stopping is disabled, the time those runs would have
taken if between shaping was disabled (circles), within shaping
was disabled (light triangles), or between and within shaping
was disabled (squares) were calculated by adding in the time
saved by early stopping. Time savings obtained by between
stopping can be visualized as the area between the horizontal
grey lines and the black line in Fig. 3(c). Time savings
obtained by within stopping can be visualized as the area
between the panel’s top and the black line in Fig. 3(d).

Nonlinear regression was used to fit a second-order polyno-
mial to each set of times (dotted lines). Clearly, for many of
the algorithm variants the times to success increased at least
polynomially: The mean time between discoveries of robots
successful in k and then k + 1 environments takes longer than
the time between discoveries of robots successful in k−1 and
then k environments. Table II reports the actual regression
models obtained when fitting the times for the four variants
across all eight tasks.

Fig. 4. Relative difficulty of the locomotion task (left bar) and the seven
manipulation tasks (right cluster). The binary labels indicate which of the
three manipulation components was selected for in that experiment group
(e.g., 110 indicates grasping was selected for, active categorical perception was
selected for, but lifting was not selected for). (a) How many of the 100 runs
completed successfully in the allotted time. (b) From among those runs that
completed, the mean time required for completion. Error bars report standard
error of the mean.

As can be seen in the table, for the two algorithm
variants in which between stopping is disabled (BS = 0)
the time to discover a successful phenotype for each new
environment scales polynomially or greater: each of the
nonlinear terms is positive. However, when between stopping
is used for the locomotion task the time complexity reduces
from polynomial (0.004x2, 0.0031x2) to sub-linear time
(−0.0004x2, −0.0002x2). This can also be seen in Fig.
5(a): the curves without between stopping (squares, light
triangles) are convex while those with between stopping are
concave (circles, dark triangles). The sublinearity of these
algorithms variants are supported by the goodness of fit
indicated by their high r2 values (r2 = 0.993, 0.994). The
lifting task also achieved sublinear time complexity when
between stopping was employed (second left-hand column
in Table II; r2 = 0.994, 0.998). For combined grasping
and lifting, sublinear time complexity was achieved when
between stopping was employed but within stopping was
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Fig. 5. Relative timings for the four regimes. (a) Locomotion. (b) Manipulation: G = 0, A = 0, L = 1. (c) Manipulation: G = 0, A = 1, L = 0.
(d) Manipulation: G = 0, A = 1, L = 1. (e) Manipulation: G = 1, A = 0, L = 0. (f) Manipulation: G = 1, A = 0, L = 1. (g) Manipulation:
G = 1, A = 1, L = 0. (h) Manipulation: G = 1, A = 1, L = 1. Each panel reports the speed to completion for the eight behaviors selected for [(a)
locomotion, (b)–(h) object manipulation variants]. Each marker indicates the mean time required for successful runs to conquer that training set size. Black
triangles denote the actual time taken when phenotypes are stopped early within evaluations (“within stopping”) and between evaluations (“between stopping”).
Circles report the predicted time if evaluations were stopped early between evaluations but not within evaluations. Gray triangles report the predicted time if
evaluations were stopped within evaluations but not between evaluations. Squares report the predicted time if neither early stopping condition was used. The
dotted line represents the fit regression line using a second-order polynomial.
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TABLE II

Nonlinear Regression Models Obtained from the Time to Success for All Eight Tasks

Locomotion Manipulation
G = 0 0 0 1 1 1 1
A = 0 1 1 0 0 1 1
L = 1 0 1 0 1 0 1

Nonlinear regression models

WS = 0 BS = 0 0.004x2 0.0005x2 0.0554x2 0.0659x2 0.0004x2 0.0018x2 0.0573x2 0.0541x2

+0.0767x +0.0375x −0.2573x +0.3291x +0.0077x +0.053x −0.1196x +0.904x

−0.1054 −0.0413 +0.2561 −0.9247 +0.0025 −0.0619 −0.0348 −1.8437

WS = 1 BS = 0 0.0031x2 0.0008x2 0.0502x2 0.0566x2 0.0004x2 0.0016x2 0.0525x2 0.0494x2

+0.0556x +0.0128x −0.2406x +0.1803x +0.0047x +0.0274x −0.1237x +0.6484x

−0.0755 −0.0158 +0.2485 −0.6159 +0.0028 −0.0347 −0.0075 −1.3855

WS = 0 BS = 1 −0.0004x2 −0.0002x2 0.0162x2 0.0118x2 0.0001x2 −0.0002x2 0.0154x2 0.0006x2

+0.0281x +0.0145x −0.0382x +0.2399x +0.0031x +0.0234x +0.0307x +0.5631x

−0.0335 −0.0067 +0.0044 −0.4831 +0.0126 −0.0094 −0.1224 −0.9591

WS = 1 BS = 1 −0.0002x2 0.0x2 0.0148x2 0.0115x2 0.0002x2 0.0001x2 0.0144x2 0.0027x2

+0.0205x +0.0055x −0.0394x +0.1633x +0.002x +0.013x +0.0206x +0.4333x

−0.0243 −0.0027 +0.0134 −0.3537 +0.0094 −0.0067 −0.102 −0.7634

r2 values from linear regression
WS = 0 BS = 0 0.985 0.995 0.881 0.964 0.978 0.99 0.924 0.98
WS = 1 BS = 0 0.984 0.985 0.878 0.958 0.973 0.985 0.921 0.977
WS = 0 BS = 1 0.993 0.994 0.921 0.979 0.978 0.997 0.954 0.986
WS = 1 BS = 1 0.994 0.998 0.917 0.975 0.973 0.997 0.951 0.986

Fig. 6. Mean objects evaluated per genome. The mean time to successfully
conquer a set of training instances was averaged over all eight behaviors
when both within and between early stopping was employed. The solid line
represents the fit regression line using a second-order polynomial (r2 = 0.96).
The dotted line represents the fit linear regression line (r2 = 0.87).

disabled (−0.0002x2, r2 = 0.997). For the remaining tasks
it can be observed that the nonlinear terms are typically at
least an order of magnitude lower when between stopping is
employed, compared to when it is disabled.

These results suggest that between stopping not only re-
duces the mean time required to evaluate phenotypes in an
evolutionary algorithm, but that the ratio of time saved to
the total time required to evaluate a phenotype increases
with total evaluation time. As shaping is employed here, this
means that the ratio of time saved to the total evaluation
time increases along with the number of task environments in
which the robot is evaluated. This observation is supported by
Fig. 6, which reports the mean number of task environments

in which robots are evaluated, over all eight tasks, as a
function of the total number of task environments available
for evaluation. The dotted line indicates the linear regression
model and assumes that the ratio of available (horizontal axis)
to evaluated (vertical axis) time remains the same as the
number of available task environments increases. This model
does not fit (r2 = 0.87) as well as a second-order regression
model (dashed line, r2 = 0.96) which indicates that the ratio
of available to evaluated task environments increases with the
number of available task environments.

Finally, there is evidence that early stopping reduces the
nonlinearity of the algorithm’s time complexity most for diffi-
cult tasks. Using the fraction of runs that successfully finish in
time as a measure of task difficulty, Fig. 4(a) indicates that the
task requiring object grasping, active categorical perception
and lifting is the most difficult task (“111”), followed by
combined active categorical perception and lifting (“011”),
followed by locomotion.

For this most difficult task when neither form of stopping is
employed, the nonlinear contribution to the time complexity is
(0.0541[x2]/(0.904[x]+0.0541[x2]))×100 = 5.64%, while the
nonlinear contribution when both forms of stopping are em-
ployed is only (0.0027[x2]/(0.4333[x] + 0.0027[x2])) × 100 =
0.62% (right-hand column in Table II). The nonlinearity con-
tribution therefore decreases by 5.64/0.62 × 100 = 909.67%
when stopping is employed. For the second-most complex
task the nonlinearity contribution decreases by 253.59% when
stopping is employed (fifth column in Table II). For the third-
most complex task (the locomotion task), the nonlinearity
contribution decreases by 513.01% when stopping is employed
(second column in Table II).

In contrast, for easy tasks such as just object grasping
(“100”) or grasping and active categorical perception (“110”),
the change in the nonlinear contribution to the time complexity
is 54.32% and 78.73%, respectively.
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Fig. 7. Effect of early stopping on symbolic regression. (a) Genetic programming gradually reduces the error of expression trees with a maximum depth of
four over 50 generations. Initially 50 training points are added to the training set, after each subsequent generation, a new training point is added. (Thick line
indicates mean averaged over 100 independent runs, thin lines indicate one unit of standard error of the mean.) (b) Dots indicate the mean cumulative time
(in CPU minutes) that it took each generation to complete. Circles indicate the mean cumulative time for the generations to complete when early stopping
is employed. The dotted line indicates the linear regression line for each of the two experimental regimes. The solid line indicates the regression line using
second regression. (c) Cumulative times for only the regime using early stopping.

V. Discussion

Here, a method has been introduced for greatly accelerating
evolutionary algorithms by reducing a theoretical maximum
fitness value over the length of an evaluation, rather than
accumulating fitness over evaluation time. When employing
shaping [7], [10]–[15] or active learning [37], [40], [41] in
which the number of training instances against which an
evolved phenotype must be evaluated increases over the run,
stopping an evaluation early may happen during the evaluation
of a single training instance (within stopping), or between
training instances (between stopping).

It was found that both within and between stopping accel-
erate an evolutionary run, but between shaping in particular
realizes the greatest time savings. Indeed for three of the
eight evolutionary robotics tasks tested here, between stopping
reduces the running time of the algorithm from polynomial to
sub-linear time [Fig. 5(a), (b), (f)]. Sub-linear time complexity
is possible because the ratio of saved time to total available
evaluation time increases with the number of training instances
when between stopping is employed.

This increasing time saving as evaluation time increases can
be explained by observing that when a new training instance
is included in the training set early in an evolutionary run,
it has a high probability of presenting the current population
of phenotypes with a novel and therefore difficult situation,
thereby greatly reducing their fitness. This can be observed
in Fig. 3, when the addition of the fifth and sixth objects
causes a drop in fitness [Fig. 3(a)] and a sudden increase in
the size of the Pareto front’s membership [Fig. 3(b)]. A drop
in fitness increases the likelihood that a new phenotype must
be evaluated for longer, against more training instances, to
determine whether it will eventually perform worse than its

parent. This degrades the time savings of between stopping,
as shown in Fig. 3(c): after the introduction of the sixth object,
phenotypes were evaluated against a relatively large number
of objects, slowing search temporarily until much more fit
phenotypes were discovered around the fifth CPU hour.

As a run continues however, phenotypes must generalize to
solve the larger number of training instances. This generaliza-
tion ensures that the introduction of a new training instance
later in the run is likely to cause a much less drastic drop in
fitness. This can be seen in the very minute fitness drops for
objects seven to 12 in Fig. 3(a). Correspondingly, as pheno-
types retain their high fitness even after the introduction of a
new training instance, early stopping can rapidly determine the
inferiority of a new phenotype: as fitness is subtracted rather
than added in early stopping, it does not require much time for
new, inferior phenotypes to have their fitness reduced below
the level of the non-dominated phenotypes in the population.
This phenomenon can be observed as the very narrow spikes in
mean evaluated objects appearing shortly after the introduction
of the seventh to twelfth objects in Fig. 3(c). The existence
of the spikes indicate that although the previously successful
phenotype may not behave well in the presence of a new train-
ing instance, the population rapidly evolves a phenotype that
can. Therefore, early stopping provides more of a time saving
benefit as a run proceeds, and explains why not only does early
stopping accelerate an evolutionary run, but can, in some cases,
reduce its running time from polynomial to sub-linear time.

Finally, evidence was provided that the speed benefit of
early stopping increases not only with phenotype evaluation
time, but also with the difficulty of the task at hand. For
three tasks that rarely finished in the maximum allotted time,
early stopping greatly reduced the nonlinear component of
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those runs’ time complexity. For easy tasks in which the
majority finished in time, there was relatively little reduction
in the nonlinear components of their time complexities. It
is hypothesized (although not yet shown) that the fitness
landscapes for these easier tasks are smoother. This means that
for any given parent, the mean fitness of its children is higher
than an equivalent parent’s offspring in a rugged landscape. In
a smooth fitness landscape, children would therefore have to
be evaluated for longer to determine whether they are inferior
to their parents, compared to children in a rugged fitness
landscape. Therefore early stopping would be of less benefit
in a smooth fitness landscape.

Early stopping was demonstrated on a series of evolutionary
robotics tasks, and therefore raises the question as to the
generality of this approach. To address this, early stopping
was applied to a standard genetic programming application
domain, symbolic regression.

A. Early Stopping for Symbolic Regression

Symbolic regression is one of the most popular application
domains for genetic programming, and the tree structures of
GP genomes lend themselves well to encoding arbitrary math-
ematical expressions. Early stopping was used to accelerate
symbolic regression in the following manner.

Four hundred independent runs of symbolic were per-
formed: 100 runs were performed against a hidden target
expression tree with length four, five, six and seven, respec-
tively. At the outset of each run, the target expression tree
was constructed by selecting either an operator or an operand
with equal probability; if the new node lay at the target
tree’s maximum depth, only an operand was added. Valid
operators were addition, sine and cosine; valid operands were
the independent variable x or a constant value in [−1, 1]. Both
the dependent variable x and the dependent variable y are
vectors of length 1000. Vectors are used instead of scalars
because when early stopping greatly reduces the evaluation
time of a single expression tree, if each node only performs a
scalar calculation, the mechanics of the evolutionary algorithm
can actually take much longer than evaluating new members
of the population. This overhead makes it more difficult to
determine the true running time of the algorithm. However, this
is not seen as a problem as it is argued here that early stopping
is of value for domains in which evaluating phenotypes takes
a considerable amount of time, which is the case for vector-
based symbolic regression.

Fifty training points x1, . . . x50 were then created in which
each element in xi is randomly selected from [−1, 1]. Each
point is evaluated by the target function t(x), yielding y(t)

1 =
t(x1), . . . y(t)

50 = t(x50). A population of 2000 expression trees
were then created in the same manner as the target expression
tree, and each was evaluated against the 50 training points.
The error of each expression tree i was then computed using

ei =
50∑
j=1

∑1000
k=1 (y(t)

j,k − y
(i)
j,k)2

1000

where y
(t)
j,k is the kth element of the result of the target

expression tree’s evaluation of the jth training point, and y
(i)
j,k

is the kth element of the result of the ith expression tree’s
evaluation of the jth training point.

Diversity in the population was maintained by employing
deterministic crowding [16], a popular diversity-maintenance
method. After all current expressions are evaluated, they
are randomly grouped into 1000 pairs. Each pair is copied,
and each of the resulting two expression trees are mutated and
crossed. Mutation involved selecting a node at random, and
replacing it with an operator or operand at random; the node’s
branches are either deleted or randomly grown to match the
mutated node’s arity. Probabilistic functional crossover [42]
was also performed after the two trees were mutated.

Deterministic crowding requires a metric d that can compute
the distance between two phenotypes i and j. This metric is
formulated here as

∑50
k=1

∑1000
m=1 |y(i)

k,m − y
(j)
k,m|. Once the two

child expression trees have been aligned with their more
similar parent, if a child tree incurs less error than its parent,
it replaces it; otherwise, it is discarded.

After one generation elapses, a new training point x51 is
created at random and added to the training set. The existing
phenotypes are evaluated on this new point, and their errors
are adjusted. The 2000 new child phenotypes are evaluated
on all 51 training points, and deterministic crowding is again
performed. This process continues for 50 generations such that
in the last generation the final cohort of expression trees are
evaluated against 100 training points.

An additional 400 independent runs were then performed
using the same 400 target expression trees from the control
experiments. In these runs however, early stopping is em-
ployed. Since two children only compete against their two
parents, as they are evaluated against the points in the training
set, evaluation of a child can be stopped once its error grows
beyond that of both parents. In such a case no matter which
parent a child is aligned with, it will not replace it even if it
is evaluated on the remaining training points.

Fig. 7 reports the running times of these two experiment
variants for the experiments in which the target tree had a
depth of seven. As can be seen, running time is more than
linear when early stopping is not employed [Fig. 7(b)]. When
second-order regression is applied to these data, the regression
model is 1.49 × 10−5x2 − 1.19 × 10−5x − 0.03 with r2 =
0.9999998. When linear regression is applied, the fit is not as
good, yielding r2 = 0.992. Conversely, when early stopping
is employed, running time is sublinear. When second-order
regression is applied, the regression model is −2.06×10−6x2 +
6.36×10−4x−0.02 with r2 = 0.9991. When linear regression
is applied, the fit is not as good, yielding r2 = 0.992.

This supports the claim that in some cases, early stopping
can not only provide a significant time savings, but can also
reduce the running time of an evolutionary algorithm from
polynomial or exponential time complexity to sublinear time
complexity. Moreover, this phenomenon is not limited to the
problem domain or type of evolutionary algorithm used.

VI. Conclusion

One of the major criticisms raised against stochastic op-
timization methods in general and evolutionary algorithms
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in particular is that they are computationally inefficient: a
vast majority of time is spent evaluating inferior phenotypes.
However, the exponential increase in computing power is
often cited as reducing the relevance of this criticism: there
is, or will shortly be sufficient computing power to tackle
increasingly complex tasks. This argument though fails to
take into consideration how evolutionary algorithms scale
with task complexity. This paper provided some insight into
this issue by demonstrating that for a series of evolutionary
robotics tasks in which the robots are gradually exposed to an
increasing number of task environments, the running time in-
creases at least polynomially with the number of task environ-
ments.

Here it was demonstrated that by using an early stopping
method that prematurely stops inferior phenotypes, the speed
of evolving successful phenotypes for all of the tasks tested
could be increased. Moreover, the time complexity of some
of the tasks could be reduced from polynomial to sublinear
time. This method ensures that only phenotypes guaranteed to
become inferior to the current best set of phenotypes if they
are evaluated fully are stopped early.

It was shown that the benefit of early stopping increases
with the number of training instances that an evolved pheno-
type must be evaluated against, and also with the difficulty
of the task. This suggests that this or other early stopping
methods will become increasingly necessary in ever more
difficult tasks in which phenotypes must be evaluated against
many training instances.

Indeed in evolutionary robotics, in order to realize robots
capable of executing several tasks in parallel or in sequence
[32], and operating in noisy or nonstationary environments [3],
[34] it becomes necessary to evaluate robots in hundreds and
most likely thousands of task environments. Furthermore, this
approach could be used to address the reality gap problem
[3], [43], in which the same phenotype must be evaluated
several times in different simulations to keep phenotypes from
exploiting hidden inaccuracies in any one simulation.

Of course, there are other applications besides evolutionary
robotics in which phenotype evaluation is computationally
expensive. The application of early stopping to vector-based
symbolic regression and observing the same reduction in run-
ning time complexity (Section V-A) suggests that this property
of early stopping is domain independent. This application also
demonstrates that it is not always necessary to calculate a
maximum fitness (or minimum error) a priori: as long as
the fitness or error calculation is guaranteed to increase (or
decrease) monotonically, it is ensured that a prematurely-
terminated phenotype could not have later improved and
qualified for membership in the breeding pool.

There are many shaping or active learning methods in which
individual evaluations are somehow separable, and therefore
do not scale polynomially: for example if a phenotype must
be evaluated k times and the evaluations are independent,
they may be evaluated in parallel on k computational nodes.
However, it should be noted that significant time savings
were accrued through the use of early stopping on all tasks
studied, regardless of whether the problem proved to scale
polynomially without early stopping.

Another criticism leveled against evolutionary methods is
that they prematurely converge. Meta-heuristics have recently
been introduced that ensure that evolution continues to ex-
plore the search space, thereby increasing the probability of
finding globally optimal phenotypes and thus increasing the
consistency of a single evolutionary run [25]–[28]. However,
such constant searching lengthens the time required for an
evolutionary run. In future work, integration between these
meta-heuristics and early stopping is planned to increase both
the speed and consistency of evolutionary methods.
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