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Abstract. Crowdsourcing is a popular technique for distributing tasks
to a group of anonymous workers over the web. Similarly, crowdseeding is
any mechanism that extracts knowledge from the crowd, and then uses
that knowledge to guide an automated process. Here we demonstrate
a method that automatically distills features from a set of robot body
plans designed by the crowd, and then uses those features to guide the
automated design of robot body plans and controllers. This approach
outperforms past work in which one feature was detected and distilled
manually. This provides evidence that the crowd collectively possesses
intuitions about the biomechanical advantages of certain body plans;
we hypothesize that these intuitions derive from their experiences with
biological organisms.
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1 Introduction

Embodied cognition [17] is the view that the intelligent behavior of an animal
or human is influenced not just by its nervous system but also by its body
plan. Engineers that produce bio-inspired designs are (implicitly or explicitly)
adhering to this view. Wings on an airplane strongly suggest the influence of the
morphology of birds. Many robots that have been developed are either humanoid
in form [19, 8, 10, 16] or resemble other animals, such as the canine Bigdog [18],
the serpentine OT-4 [3] or the chelonian Aqua [6]. Some biomimetic designs
result from an explicit aim to exploit some desirable property of the behavior or
feature of animals or of their environment. But in some cases the tendency to bias
search toward specific design spaces could be considered an implicit tendency of
collective human design behavior.

In [26], web participants collectively designed robot bodies. It was found
that, among the successful designs, there was an overrepresentation of symmetric
designs. This suggests that contributors have a strong proclivity for locomoting
agents that resemble animals found in the physical world. Symmetry and single-
component designs were the most explicit biases in robot bodies created by the
crowd. However, there could be other, less obvious, traits and relations between
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them that could be exploited. In this study, we describe a novel methodology
for extracting latent information from a group of participants in a crowdsourced
experiment. Using the design of robot bodies and control as our domain, we use
symbolic regression to discover implicit relations between properties of robot
designs and an objective, in our case rapid forward locomotion. We then use
these latent relationships to seed a new robot design process. This methodology
represents a new mode of collaborative interaction between a crowd of human
designers and a machine learning algorithm.

2 Related Work

There has been of late a great deal of interest in finding methods to utilize
the collective intelligence of crowds to solve complex problems [21, 7, 9, 11]. The
field of crowdsourcing has moved from being a convenient way to source simple,
separable human intelligence tasks [14] that cannot yet be completed by machine
intelligence [24] to being used to combine the efforts of individuals to solve larger
problems that might not be amenable to reduction into a divide-and-conquer
strategy [15, 29, 1, 23].

Use of human participants in evolutionary algorithms has been common for
both selection of individuals in a population [5, 22] and in introducing variation
in the evolutionary population [12]. But each of these examples involved direct
user participation in the evolutionary search. Crowdsourcing in evolutionary
robotics has been used to guide search for better robots and robot control [4,
2, 25]; but in these studies, the use of human intuition was used to actively
guide search during the experiment rather than to distill out useful features
in a crowdsourced study that were then incorporated into a separate search
algorithm. In [26], features were extracted to seed the fitness objective of an
evolutionary algorithm. But instead of using automated methods to find latent
variables and their relations that contribute to performance – as is the case in
this study – obvious characteristics of robot bodies favored by the crowd were
distilled manually to seed the objective function.

3 Methods

We conducted an experiment in three stages. In the first stage of the experiment
(Section 3.1), we deployed a web-based tool in which participants in a crowd-
sourced study designed robots collaboratively. In the second stage (Section 3.2),
we used symbolic regression via genetic programming [13] to identify a novel
relationship between the attributes of the crowdsourced robot designs and the
distance that robots were able to move. In the third stage (Section 3.3), we
used the relationship found through symbolic regression to augment a stochastic
search process from a single-objective search problem to that of a multiobjective
search.
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3.1 First Stage: Crowdsourcing

We deployed a web-based tool that allowed participants to rapidly design robots
using a simple grid-based drawing panel (Figure 1). We invited participants to
design robots by recruiting them through the online forum Reddit (www.reddit.com).
Participation was unpaid and voluntary. Participants were only given the instruc-
tions to design a robot that could “move farther”. They were asked to connect
dots to design a robot and click GO. They were told that their robot will learn
new behaviors if they run the same robot multiple times.

A

B C

Fig. 1: Screenshot of web-based robot design tool. Users designed robot bodies
by “connecting the dots” (Panel C). When they clicked “GO”, they would see
their robot move in a simulation (Panel B). They were shown a random sampling
of 13 robots designed by others (Panel A).

Users connected dots in the design panel by clicking on a dot and dragging
their mouse to another dot, which would form a line. Only lines between adja-
cent dots were allowed. When they clicked GO, each line was translated into a
0.1 × 0.1 × 0.1 meter rigid segment in the simulation panel and each dot that
was adjacent to a line was translated into a 0.2 × 0.2 × 0.2 rigid cube. Cubes
were connected to segments by a one-degree-of-freedom hinge joint. Robots were
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simulated in the three-dimensional physics simulation engine, Ammo.js1, and
were rendered using Web3D2 in the participant’s web browser.

Each of the robot’s joints was assigned to move either in-phase (0◦) or out-of-
phase (180◦) with other joints. When a particular robot design was run for the
first time, it was assigned its own hill-climber algorithm on a central repository,
which would determine whether each of its joints would be in-phase or out-
of-phase. If the same or another user repeated that design for a run in the
simulation, the joint configuration would either be repeated or a joint could be
randomly mutated from in-phase to out-of-phase or vice-versa at a 0.1 mutation
rate. Thus every time a participant clicked GO, it was contributing one run to
the hillclimber for that particular robot morphology. All joints were actuated
with displacement-controlled motors via a sinusoidal signal with a frequency of
1.5 Hz, and sweeping an angle of [−45◦,+45◦]. The axis of rotation was defined
to be perpindicular to the normal of the ground plane and the normal of the faces
of the cube and segment being connected. Each time a robot was simulated, it
was allowed to run for 15 seconds of simulation time. The distance that the robot
moved from its starting point was displayed in the browser above the simulation.

Participants were exposed to designs created by other participants at the top
of their browser windows and were shown the best distance that that particular
morphology was able to achieve. They were free to ignore these designs or use
them as guidance in their own designs. Every time a user clicked GO or refreshed
the web site, they would be exposed to another random sampling of 13 designs
stored in the central repository of designs.

3.2 Second Stage: Mining Latent Features

The methodology of designing robots by connecting dots with lines was con-
ducive to storing representations of these designs as a set of edges and nodes in
a graph adjacency matrix. We stored the designs of all unique robots created
by the crowd in the first stage of the experiment. Then for each of these robot
design, we calculated network measures using its graph representation (for a list
of network measures used, see Table 1a).

We then used these calculated network measures on the crowdsourced robot
morphologies as explanatory variables in a symbolic regression model. The best
distance that that morphology was able to move was the response variable used
to train the model. We used the Eureqa [20] symbolic regression package to build
the models. The set of functions allowed in the model are listed in Table 1b.

Eureqa is a multobjective search tool: it maintains non-dominated solutions
along a Pareto front with respect to either minimum error or minimal solution
complexity. We ran ten trials of symbolic regression until they reached 100%
convergence and at least 80% maturity to find expressions that related distance
to the set of explanatory network measures. We then selected the best solution
of the ten trials with the minimum fit error value (and thus maximal complexity)
for use in the third stage of the study.

1 www.github.com/kripken/ammo.js
2 www.khronos.org/webgl
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Variable Symbol

Maximal matching Mmax

Number of connected components c

Maximum degree Dmax

Minimum degree Dmin

Number of limbs L

Not a chordal graph C

Symmetry S

Number of segments G

Average Degree Dave

Average degree connectivity Dcon

Average clustering Tave

(a) Variables

Function Name Symbol

Addition +

Subtraction −
Multiplication ·
Division /

Logistic function σ()

Indicator function I()

Cosine cos()

Sine sin()

Tangent tan()

Exponential exp()

Natural Logarithm log()

Power xy

Square root
√

Gaussian G()

Less than or equal ≤
Greater than or equal ≥

(b) Functions

Table 1: (a) Variables used as explanatory variables and (b) functions allowed
for use in symbolic regression expressions.

3.3 Third Stage: Seeding the Objective

In the third stage of our study, we used the best expression found using sym-
bolic regression as an additional objective in a genetic algorithm to evolve new
robots and their controllers. The genomes in this genetic algorithm consisted of
bitstrings grouped into sets of three. Each of these groups corresponded to a
potential lines position between adjacent dots in the same 5 × 5 grid that users
in the crowdsourced portion of the study were given to design robots. Within
each group of three bits, the center bit determined whether there was a segment
present at that location. If a segment was present (a 1 in the center bit location)
the bits to the left and right of the center bit determined whether the motor
at the left/top or right/bottom hinge joint would move in-phase or out-of-phase
with other motors depending on whether the line was vertical or horizontal (as
illustrated in Figure 2).

We compared the best distances achieved by two different, seeded evolu-
tionary algorithms: both had the primary objective of maximizing the distance
that a robot was able to move in a physics simulation, but they were given addi-
tional objectives derived from the preferences of the crowdsourced portion of the
study. The two treatments differed in this second, seeded, objective. In the first
(control) treatment, the secondary objective was to maximize the ratio of sym-
metry to number of connected components that made up the robot body. This
seeded objective was shown [26] to outperform an evolutionary algorithm with
the single objective of maximizing distance that a robot could move. The second
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presence of robot segment
left/top hinge phase

right/bottom hinge phase
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...
Fig. 2: Genotype to phenotype translation.

(experimental) treatment consisted of using the expression found by symbolic
regression described in Section 3.2 to minimize the error between the expression
and distance that a particular design with those parameters could achieve.

We performed 100 independent trials for each of the control and experimental
treatments. Each evolutionary process ran for 100 generations with a population
of 50 individuals. We used bit-flip mutation at a rate of 0.1 as well as uniform
crossover at a rate of 0.1.

4 Results

In the first, crowdsourced, stage of the experiment, a total of 947 volunteers
participated in robot design. They created 2292 unique designs. On average, 5.63
designs were created by each participant with a long-tailed distribution pattern
of participation as is common in crowdsourced studies [27, 28]. Drawings of the
best five designs can be seen in Figure 3.

Fig. 3: Top five unique designs in stage one (left to right, top to bottom). Note
that some designs that are considered unique are morphologically similar but at
different grid coordinates.

Examples of the ten best symbolic regression expressions found in the second
stage of the experiment can be seen in Table 2. The expression with the minimum
error value (marked with *) was used in the obtaining distance values for the
experimental treatment reported in Figure 4.
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Solution Error

1∗ I(Dmax ≤ L) · min(G(Dconn), S) + 0.177min(c +

6.800Dconn, D
4.510−max(S,log(L))
max )

0.771

2 0.0.041 · c · S · I(L ≥ 0.044 · c ·Dmax) +min(c0.350, Dmax) 0.773

3 min(Dmax · σ(Mmax), 2.187)− 0.085 ·Mmax 0.804

4 min(3.150, Dmax + 0.170 ·Mmax)− 0.144 ·Mmax 0.806

5
√
Dmax − (0.003 ·N · c2)S · cos(Dmax) 0.786

6 min(3.054, Dmax ·min(Mmax, 1.325))− 0.125 ·Mmax 0.807

7 4.374 · c ·min(0.033, Dcon) + I(Dmax ≥ 3) +min(S, I(Dmax ≤ L)) 0.781

8 0.053 · c · S · I(L ≥ 0.044 · c ·Dmax) +min(log c+ S,Dmax) 0.773

9 Dcon + S · I(L ≥ Dmax) + 0.196 ·min(3.471Dmax , c)− I(L ≥ G) 0.771

10 2.819 · σ(S) ·min(3.180, Dmax)− 0.141 ·Mmax ·min(Mmax, Dmax)−
2.960 · I(3.887− L ≥Mmax)

0.779

Table 2: Lowest error solutions found in the ten symbolic regression trials. See
Table 1 for variable definitions and the list of functions used in the expressions.
Constants are rounded to the nearest thousandth for brevity. Expression 1 was
used as the second objective in the experimental treatment.

The best distances achieved in the 100 independent runs of the control and
experimental treatments in the third stage of the experiment are compared in
Figure 4. The best five designs in this third stage of the study are illustrated in
Figure 5.

5 Discussion

The introduction of an additional objective using a symbolic regression expres-
sion significantly outperformed the inclusion of manually-derived additional ob-
jectives to the fitness in the genetic algorithm as reported in [26] (p < 0.0001;
independent two group t-test), which was itself shown to significantly outperform
using the primary objective alone to guide search. We are comparing performance
of these methods on the basis of the primary, distance, objective alone. Since
adding additional objectives decreases selection pressure on the primary objec-
tive, this finding is surprising and encouraging for the method that we introduce
here.

The expressions obtained using symbolic regression are quite complex. We
took the expressions from the Pareto Front that had the lowest error of all
solutions on the front, which necessarily means that these solutions would be
the most complex expressions. Despite their complexity, we have seen empirically
that they were able to outperform more simple multiobjective fitness values. This
suggests that there is some valuable latent information in the symbolic regression
expressions distilled from the crowd, despite the difficulty of parsing out exactly
what the expressions entail at an intuitive level.
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Fig. 4: Distance comparison between treatments. The control case (pink) shows
the distance achieved by using the primary distance objective as well as a com-
bined symmetry/number of components objective. The experimental case (blue)
shows the distance achieved by using the primary distance objective as well as
the expression obtained using symbolic regression. Error bars indicate the 95%
confidence intervals around the mean distance value. The difference is significant
at the p < 0.0001 level (independent two group t-test).

Fig. 5: Top five unique designs in stage three (left to right, top to bottom).

6 Conclusion and Future Work

In this work, we demonstrated a new process for automating the distillation
of a crowd’s design preferences into an additional objective used to seed an
evolutionary algorithm. This objective was in addition to the primary objective
of maximizing the distance that a robot was able to move from an initial fixed
point in a simulation. We showed that this process significantly outperformed a
manual method for extraction of information from crowdsourced studies, which
itself was shown to outperform the use of the primary objective alone in the
evolutionary algorithm.

In future work, we will investigate whether this technique can be incorporated
into other domains. In an era of large amounts of data – much of it generated
by humans – there is potential for mining features and expressions from that
data that can then be used to improve training of machine learning algorithms,
in the development of better design requirements for engineering projects or in
seeding algorithms for creative algorithmic work.
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Additionally, we will investigate methods to obtain intuitive information from
the symbolic regression expressions themselves. In the present study, expressions
were directly copied into a multiobjective search. However, there may be kernels
of information in the expressions that could be distilled out to further to reduce
complexity and drill down to the terms within the expression that are the basis
for this method’s ability to outperform manually-derived objectives.
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