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ABSTRACT

In previous papers we have described a co-evolutionary al-
gorithm (EEA), the estimation-exploration algorithm, that
infers the hidden inner structure of systems using minimal
testing. In this paper we introduce the concept of ‘managed
challenge’ to alleviate the problem of disengagement in this
and other co-evol-utionary algorithms. A known problem in
co-evolutionary dynamics occurs when one population sys-
tematically outperforms the other, resulting in a loss of se-
lection pressure for both populations. In system identifica-
tion (which deals with determining the inner structure of a
system using only input/output data), multiple trials (a test
that causes the system to produce some output) on the sys-
tem to be identified must be performed. When such trials
are costly, this disengagement results in wasted data that is
not utilized by the evolutionary process. Here we propose
that data from futile interactions should be stored during
disengagement and automatically re-introduced later, when
the population re-engages: we refer to this as the test bank.
We demonstrate that the advantage of the test bank is two-
fold: it allows for the discovery of more accurate models,
and it reduces the amount of required training data for both
parametric identification — parameterizing inner structure —
and symbolic identification — approximating inner structure
using symbolic equations — of nonlinear systems.
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1. INTRODUCTION

Disengagement is one of several pathologies known to ex-
ist in artificial co-evolutionary systems [8] [22]. This occurs
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when either the individuals from one population are too
easy, in which case individuals from a second population
can all dominate them; or too difficult, in which case all the
individuals from the second population are dominated by
them. In either case, the fitness gradient in this second pop-
ulation is lost: individuals from this population are either
all equally bad or equally good. In other co-evolutionary
methods [20] [16] [17] [10] [6] [9] [12] [5] [23] it has been
shown, directly or indirectly, that tests which cause variety
in the behaviors of the learners induce a fitness gradient in
the learning population. One prime example is the work of
Ficici (2001), in which tests are always selected that best
distinguish between learners, which in his work are sets of
cellular automata rules.

Somewhat surprisingly, it turns out that blindly maxi-
mizing the variance in performance among learners is not
always helpful, if the learners are trying to approximate the
behavior of some external system. Large performance vari-
ation may indicate not that there is one or a few learners
that do well against this test, but that none of them know
how to deal with it properly. For example learners may all
react differently to a test, but if that test is then sent to the
external system and the output recorded, all of the learn-
ers’ behaviors may greatly differ from the resulting system
behavior. In other words variable behavior before system
testing may translate into equally poor performance after
testing, thus introducing disengagement. For this reason,
simply inducing performance differences in learners will not
solve disengagement on its own, if the learners are trying to
model an external system; an intermediate level of difficulty
must be maintained.

In this paper we introduce such a mechanism, and present
it in the context of our co-evolutionary system identification
method, the estimation-exploration algorithm (EEA). The
new mechanism is referred to as the test bank, and the pro-
cess of mediating test difficulty (which in this case is effected
using the test bank) is referred to as managed challenge. We
illustrate managed challenge by showing how it can be used
to accelerate both parametric and symbolic identification of
nonlinear systems.

System identification [21] [14] involves the use of a set
of input/output data returned by some hidden system to
automatically infer the internal structure of that system.
System identification approaches are usually divided into
four classes: parametric and symbolic identification of lin-
ear systems, and parametric and symbolic identification of
nonlinear systems. Parametric identification involves the
discovery of appropriate parameter values for a target sys-
tem in which the governing equations are assumed to be
known; symbolic (or structural) identification requires the
discovery of the governing equations themselves. A host of



analytic approaches exist for parametric identification [21]
[14], but symbolic identification, especially of nonlinear sys-
tems, is beyond traditional approaches.

Evolutionary computation—especially genetic program-
ming—is particularly well suited for symbolic identification
because candidate models can be encoded as arbitrarily-
sized equations. Several approaches to symbolic identifica-
tion of nonlinear systems using genetic programming have
been attempted [1] [11] [13] [19] [24] [7], but these approaches
have focused on how to evolve the equations, rather than
how to extract useful information from the hidden system.
Chen et al. [7] introduced an additive tree encoding that
allows for combined parametric and symbolic identification.
Winkler et al. [24] proposed a hybrid system in which ge-
netic programming is used for symbolic identification and
evolution strategies [18] are used for parametric identifica-
tion. Koza et al. [13] proposed a technique in which para-
metric identification is performed along with symbolic iden-
tification directly inside the parse tree.

In many problem domains however, extracting training
data from a hidden system can be costly, slow, potentially
dangerous! and can alter the internal structure of the system
itself. For example in medicine it is particularly desirable
to perform as few tests as possible, and one way to do this
is to form preliminary diagnoses using a few tests, and only
then perform additional tests based on the diagnoses.

EEA attempts to automatically produce accurate models
of a target system by only performing tests that extract new
information from the target system, rather than simply ap-
plying a large number of random tests. Heuristic testing is
also better than random testing, but this assumes that the
algorithm knows something about the structure of the target
to be inferred. We use the term intelligent testing to indi-
cate that tests should be selected that help us best improve
our current models, and that we have little or no a priori
knowledge about the structure of the target. Bongard et al.
[3] [2] have shown that this intelligent testing can acceler-
ate identification compared to random testing; we provide
further support of this claim here, by performing both para-
metric and symbolic identification on a nonlinear dynamical
system.

However we also show that automated managing of test
difficulty—‘managed challenge’—can also accelerate system
identification. This is done by storing target results which
are currently too difficult for the candidate models to explain
in a test bank, and withdrawing results when the models
are better suited to explaining them. In the context of sys-
tem identification, managed challenge has two benefits: it
keeps disengagement from occurring (i.e. the loss of gra-
dient among the candidate model population); and further
reduces the number of target trials required for identifica-
tion (i.e. difficult tests are not discarded, but are recycled
for model refinement at a later time).

In the next section we introduce the estimation-exploration
algorithm and the test bank. In section 3 we document the
use of this combined algorithm for parametric identification;
in section 4 we document the use of it for symbolic identi-
fication. In the final section we provide some discussion,
concluding remarks, and future research directions.

2. THEALGORITHM

The estimation-exploration algorithm (EEA) is a coevol-
utionary algorithm for performing system identification. Sys-
tem identification involves automated construction of a mo-
del of a target system, using only input supplied to the sys-

!By definition, the effect of performing a completely new
test on an unknown system is more dangerous than per-
forming a similar, but different test to those performed pre-
viously.
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Figure 1: Two complementary definitions of an in-
telligent test. In this example a RoboCup team has
access to a database containing two candidate mod-
els of the robot and its environment. The right-
hand robot wishes to achieve a particular result, Y,
so chooses to perform action C' because both models
agree that Y will result. The left-hand robot, who
wishes to improve the accuracy of the models in the
set, chooses to perform action B, because the two
models disagree as to the result of this action. De-
pending on which result occurs, one of the models
will be invalidated.

tem and observed output [14]. The EEA divides the sys-
tem identification into two components: the generation of
accurate models (the estimation phase) and the generation
of intelligent input data, or tests (the exploration phase).
Bongard et al. [3] [2] demonstrated the application of the
EEA to a number of system identification tasks, and have
demonstrated that by intelligently selecting tests to perform
on the target system, the internal structure of the target sys-
tem can be inferred using less tests than if tests are selected
at random.

An accurate model is defined as one that produces sim-
ilar output data as the target system, when both the mo-
del and target system are supplied with the same input.
An intelligent test can be much more broadly defined. In
the case of system identification, an intelligent test is one
that indirectly unveils hidden internal components of the
target system, thereby allowing the generation of more ac-
curate models. This can be achieved by evolving a test that
causes maximal disagreement among the current set of can-
didate models; the resulting target system output from such
a test will provide increased support of some models, and
will prove the other models are inaccurate. This way of de-
termining the quality of a test is very indirect, as it does not
immediately involve the target system. In other situations,
an intelligent test is one that elicits some desirable behav-
ior from the most accurate model currently on hand; if the
model is accurate, then that same test should produce the
same desirable behavior on the target system. This differ-
ent interpretation of an intelligent test is shown in Figure
1. In the work presented here the former interpretation of
an intelligent test is used: a test is a set of initial condi-
tions that, when supplied to a set of competing candidate
models of some target dynamical system, produces the most
disagreement between the models.

Figure 2 illustrates the flow of the EEA pictorially. The
algorithmic flow of the algorithm is given as follows:

1. Initialize
(a) If an approximate model is available, goto 4.

(b) If no model is available, generate a random test.

2. Perform Target Trial
(a) Send evolved (or random) test to the target.

(b) Record the resulting output.



3. Evolve Candidate Models (Estimation Phase)

(a) If this is the first pass through the estimation
phase, generate a random set of candidate mod-
els.

(b) If it is the second or subsequent pass, seed the
population with the best models evolved so far.

(c) Provide the evolving models with all previous tests
and outputs that have been obtained from the tar-
get system, plus the new test/output pair, minus
those pairs that are currently stored in the test
bank. This set of pairs is known as the test suite.

(d) Output the best candidate models to the explo-
ration phase.

4. Manage Challenge (The Test Bank)

(a) If the most accurate model so far achieved a sub-
jective error® below € (i.e. the most recent test
was successfully ‘digested’), go to (c); otherwise,
goto (b).

(b) Deposit the most recent test in the test bank,
along with the target system’s behavior in re-
sponse to this test.

(c) For each test/output pair in the test bank, add
it to the test suite, and compute the current best
model’s subjective error. If the subjective error
for any of these pairs is less than 2¢, withdraw
it from the test bank, permanently add it to the
test suite and goto 3; otherwise, delete it from the
test suite and goto 4.

5. Evolve Informative Tests (Exploration Phase)

(a) Always begin the exploration phase with a ran-
dom population of tests.

(b) Evolve a test that causes the most disagreement
between the candidate model(s) provided by the
estimation phase, elicits some desirable behavior
from the candidate model(s), or some combina-
tion of these two fitness criteria.

(c) Goto 2).

The EEA is cyclical in the sense that the evolution of
models alternates with the evolution of tests, such that test
data accumulates over the lifetime of the run: this stands in
contrast to many system identification and machine learning
methods in which a large amount of training data is gathered
before inference begins (eg. [1, 11, 14]). In the EEA, during
the nth pass through the estimation phase there are at most
n input/output data pairs available for model generation.

The algorithm is evolutionary in the sense that the esti-
mation phase generates a population of candidate models
using an evolutionary algorithm, and the exploration phase
generates a population of tests also using an evolutionary
algorithm. It should be noted however that an alternative
search method, a heuristic algorithm or a combination of
the two could be used in either phase in lieu of evolutionary
search. Co-evolution implies that the evolutionary progress
of one population is dependent on the evolutionary progress
of the other. In the EEA, tests are evolved using the current
most accurate models output by the estimation phase; and
models are evolved based on the results of tests evolved in
the exploration phase.

2Subjective error reports the inaccuracy of the current mo-
delfonly using training data collected from the target system
so far.

PHYSICAL
SYSTEM
INPUT OUTPUT
TO FROM
SYSTEM SYSTEM
b X
GENERATE GENERATE
EXPERIMENTS MODELS
(EXPLORATION (ESTIMATION)
ry T
[} I
[No Y
Are there Was the last
“digestible” | Yes | experiment
tests in the properly
Test Bank? “digested”?
lYes lNo
Withdraw Deposit
“digestible” hard test.
test.
The J
Test ¢
4| Bank

Figure 2: The enhanced estimation-exploration al-
gorithm. The original algorithm is shown above the
dotted line; the mechanism for ‘managing challenge’
is shown below the line.

The Test Bank

In initial experiments using EEA to identify nonlinear sys-
tems, it was observed that disengagement was occurring.
Disengagement has been recognized in other co-evolutionary
methods [8] [22], and occurs when the fitness gradient in
one population disappears because individuals in that pop-
ulation can no longer successfully respond (however this re-
sponse is measured) to the set of antagonistic individuals
used to determine fitness: i.e., all individuals in the first pop-
ulation perform equally badly when faced with the chosen
individuals from the second population. In EEA, disengage-
ment occurs when the algorithm accumulates difficult tests:
each successive pass through the estimation phase fails to
produce models that can explain those tests (i.e. produce
similar behavior as the target system for those particular
initial conditions).

In order to combat disengagement, an additional compo-
nent was added to the original EEA formulation: the test
bank. The usage of the test bank is explained in the pseu-
docode given above. The test bank effectively manages test
difficulty; tests that are currently too difficult for the cur-
rent best model are stored for later use, and tests that have
now become easier (they induce an error in the current best
model that is equal to or below some threshold) are with-
drawn and used to refine the models, instead of performing
a new test on the target trial. As will be shown in the re-
sults presented in the next two sections, the test bank has
two advantages: it prevents disengagement, and it reduces
the number of required target trials.

3. PARAMETRIC IDENTIFICATION

In this section we describe the application of the EEA for
parametric identification of nonlinear systems. In order to
apply the EEA to a novel problem domain, there are six
steps that must be followed in order to completely spec-
ify the application: characterization of the target system:;
initialization; estimation phase; exploration phase; termina-



tion; and validation.

1) Characterization of the target system.

The target system identified in this approach is a non-
linear dynamical system, in which it is assumed that the
governing equations are known, but the parameters of the
equation are not. In order to test this application we have
attempted to identify the two-eyed monster dynamical sys-
tem, as described in [4], and given as

o = y+y” (1)
"= Sz dy—z +1°‘, 2
Yy GY w5y (2)

where [, 87,0,m] = [2,6,5,—1,1] are the hidden param-
eters of the target system, and correspond to the specific
instance of the two-eyed monster system described in [4].
Given some initial conditions IC = [zo, yo], the target sys-
tem is integrated using the Runge-Kutta method, using a
step size of h = 0.01, from o = 0s to Ly q = 2s.

2) Initialization. To initiate the EEA, a random ini-
tial condition for each variable is chosen from the range
[—10,10], and supplied to the target system. The result-
ing time series of z and y are returned to the estimation
phase.

3) Estimation Phase. Each genome in the estimation
phase encodes a candidate model of the target system. For
parametric identification, the genotype is the string of five
unknown parameters [«, 37,0,7], encoded as real values.
At the beginning of the first pass through the estimation
phase, 300 random genomes are generated: genome values
can range between [—10, 10].

Evaluation of a genome proceeds as follows. The generic
target equations are labeled using the five encoded param-
eters specified in that genome. The resulting model is pre-
sented with all of the initial conditions currently in the test
suite; for each test, the model is integrated using the Runge-
Kutta method with A = 0.01 from to = Os to tend = 2s, and
the resulting time series are recorded. Once all tests have
been run on the current model, the model’s subjective error
is computed using

v n 1 1
S max(t) —m [ = mEY)
86 = wn ) (3)

where v = 2 is the number of state variables in the E;/stem;
n is the number of tests currently in the test suite; tEj is the
value of variable i, at time interval k, produced by the target

system using test j; and mg) is the value of variable i, at
time interval k, produced by the candidate model using test
j. This metric gives an approximate measure of how well the
current model matches the observed behavior of the target
system. The maz term ensures that the system will first
generate models that mimic major transients in the target
system, such as narrow and tall spikes in the time series,
because such transients produce large differences over short
time periods.

Once all of the genomes have been evaluated, determin-
istic crowding [15] is used to produce a new generation of
genomes. All genomes are grouped into pairs at random,
and are then crossed using one-point crossover, and then
mutated. Mutation is as follows. A single value per genome
is chosen, and is either: replaced with a new random value
taken from [—10,10] (probability= 0.5); increased by 10"
(p= 0.25), where x is a random real number taken from
[=7,1], or decreased by 10* (p=0.25)%. The two resulting
child genomes are compared against both parent genomes

3This mutation operator seemed to do well for our problem;
however more standard operators such as the Gaussian or
adaptive Gaussian operator could also be used.

using variational distance, and are paired with the most sim-
ilar parent. The new child genomes are evaluated, and if a
child achieves a lower subjective error than its parent, the
child replaces the parent. This process is continued until a
model achieves a subjective error of s < e(= 0.1), or un-
til the most accurate model in the population has not been
replaced for 20 generations. We have yet to investigate sys-
tematic methods for determining € given some target sys-
tem, or how sensitive the algorithm is to this parameter.
Additional investigation into the sensitivity of all of the pa-
rameters required by the algorithm is warranted.

When the estimation phase terminates, the 10 best models
are output. On the second and subsequent passes through
the estimation phase, the most recent 10 best models are
used to seed the initial random population.

4) Exploration Phase. If a test is not withdrawn from
the test bank, then a new one must be created. This is
accomplished in the exploration phase. Each pass through
the exploration phase begins with an initial random popu-
lation of 300 genomes (tests from previous passes are not
used to seed the initial random population4). Each genome
is composed of v real values (in this case v = 2), where each
value indicates the initial value of the corresponding vari-
able. Each genome is evaluated as follows. The encoded
initial condition is supplied to each of the 10 models out-
put by the estimation phase, and the resulting behaviors
are recorded. The fitness of a test is then given as

D > B T ) )
f = ) ) ()

where m;; is the final value of the ith variable from model

j, and a(mz(-;l), e ,mz(-;lg) gives the variance of these final

signals across all 10 models.

When all of the tests have been evaluated, a new genera-
tion of genomes is produced using deterministic crowding as
explained in the previous sub-section. In this case however,
child genomes that induce higher model variance than their
assigned parent genome replace it. The exploration phase is
continued for 30 generations, and the test with the highest
fitness is sent to the target system for evaluation.

5) Termination. Termination occurs when the algo-
rithm has passed through the estimation phase 40 times. In
cases when the test bank is used, there may be fewer than
40 passes through the exploration phase, and fewer than 40
target trials.

6) Validation. After each pass through the estimation
phase, the best model was saved, and its objective error was
calculated using

v 1000 1 1
i1 Ej:l max(|tz(-]-) — mEj)|7 A |tz(-;l) — mg;l) )
Oe = Ut k) (5)

where 1000 random, unseen initial conditions are generated
as test data.

Parametric I dentification Results

Four sets of 60 independent runs were performed against the
target system. In the first set, both intelligent testing and
the test bank were disabled: the exploration phase simply
outputs a random test instead of evolving one, and tests are
never stored or retrieved from the test bank. In the second
set, the exploration phase is enabled and the test bank is
disabled. In the third set, the exploration phase is disabled
and the test bank is enabled. In the fourth set, both the
exploration phase and the test bank are enabled.

Figure 3 reports the mean behaviors of these four algo-
rithm variants. Figure 3a reports the mean objective errors

4 Although this might further empower the algorithm.
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Figure 3: Mean performance of the four algorithm variants for parametric identification. a: Mean objective
errors of the best models produced after each pass through the estimation phase. b: The mean number of
target trials performed, as a function of the number of elapsed passes through the estimation phase. c: The
mean number of model evaluations performed, as a function of the number of elapsed passes through the
estimation phase. All error bars in this paper report standard error.

of the best models produced by each pass through the esti-
mation phase. In some cases the objective error of a model
approaches infinity, due to some inaccuracy of the model
that causes positive or negative feedback. In these cases the
model is discarded and the mean objective is calculated us-
ing only the remaining well behaved models®. Figures 3b
and 3c report the mean number of target trials and model
evaluations that have been conducted so far, at the end of
that particular pass through the estimation phase, respec-
tively.

Figure 3a indicates that both the use of intelligent test-
ing, as well as test difficulty mediation via the test bank,
improves the ability of the algorithm to discover accurate
models. If either intelligent testing or test difficulty me-
diation is disabled (or both), the algorithm discovers, on
average, less accurate models. The one exception is the sta-
tistical overlap between the third and fourth variants: in-
telligent testing without the test bank exhibits much more
variable performance, and since its standard error overlaps
with intelligent testing with the bank, which has much more
consistent behavior.

Furthermore, Figure 3b indicates that the fourth variant
is able to discover more accurate models using less target
trials than the other three variants. This indicates that the
test bank not only helps to manage test difficulty, but also
statistically significantly reduces the number of target trials
required per run of the algorithm, compared to runs that
do not use the test bank: without the test bank, the num-
ber of target trials required is equal to the number of passes
through the estimation phase; with the test bank, fewer tri-
als are required. Finally, Figure 3¢ indicates that using the
test bank significantly reduces the number of model evalua-
tions performed during a run. This is because when the test
bank is not used, each model must be evaluated i times, us-
ing the 7 tests generated so far, during the ith pass through
the estimation phase; when using the test bank, some tests
may be stored in the bank, and so that there may be less
than ¢ tests in the test suite during the ith pass through the
estimation, thereby reducing the total number of required
model evaluations.

4. SYMBOLIC IDENTIFICATION

The EEA has also been used for symbolic identification in
nonlinear systems, in which it is assumed that the equations
governing the target system are unknown.

® A model may be well behaved but still inaccurate

1) Characterization of the target system. The tar-
get system is the same as that used in the previous section,
the two-eyed monster. It is assumed that the equations given
in Eqn. 2 are unknown. However, as has been pointed out
in [7], it is difficult to identify both the structure and pa-
rameters of a hidden system simultaneously, so we have as-
sumed that the five parameters [, B7,0,7] = [2,6,5, —1,1]
are known, and do not have to be identified. We are cur-
rently devising a hybrid evolutionary approach that allows
us to evolve both the structure and parameters of the hidden
system simultaneously.

2) Initialization. Initialization is the same as for para-
metric identification: a random set of initial conditions is
drawn from [—10,10], supplied to the target system, and
the resulting state variable time series are returned, along
with the test, to the EEA.

3) Estimation Phase. In the estimation phase, each
genome encodes a set of differential equations that, when
labeled with the five known parameters, produces a candi-
date model. Each genome is encoded as a forest in which
there is one parse tree for each state variable, and each parse
tree encodes the differential equation for that variable. Non-
terminal nodes are labeled from the set [sin, cos, +, —, *, %,
pow], where % is protected division, and terminal nodes are
labeled from the set [v,p,t], where v indicates a state vari-
able, p indicates a parameter, and ¢ represents the current
time in seconds. Terminal nodes also have an associated
real value that is rounded to an integer in [0, 1] when the
terminal node has label v; to an integer in [0,4] when the
terminal node has label p; and is discarded for label ¢t. The
integer is treated as an index when paired with the terminal
label: for example v(0) = z, v(1) = y, p(0) = «a, and so
on. The maximum depth allowed for any tree was set to 5,
which is the maximum depth of the 3y’ tree when the target
system is cast as a parse tree. Other symbolic encodings are
possible, and may indeed further improve the performance
of this algorithm. However the focus of this paper is not to
demonstrate a superior symbolic encoding, but to demon-
strate the usefulness of combined intelligent testing and test
difficulty mediation.

Thus the domain knowledge that we bring to this problem
is as follows: the number of state variables; the number and
value of the parameters; the required operator types; and
the general size of the expected solution.

During the first pass through the estimation phase, 300
random forests are generated. For each node that is cre-
ated in each tree, a label is chosen from the combined set
[sin, cos, +, —, *, %, pow, v, p, t] with equiprobability if the de-



Table 1: Symbolic Representations of Three Successive Models
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Figure 4: Mean performance of the four algorithm variants for symbolic identification. a: Mean objective
errors of the best models produced after each pass through the estimation phase. b: The mean number of
target trials performed, as a function of the number of elapsed passes through the estimation phase. c: The
mean number of model evaluations performed, as a function of the number of elapsed passes through the

estimation phase.

pth is less than five, and from the terminal set [v, p, ¢] with
equiprobability otherwise. A random real number is also se-
lected for the node. If the arity of the labeled node is one
or more, a left subtree is created; if the arity is two, a right
subtree is also created.

Each forest is evaluated as follows. For each test the cur-
rent state variable values, the parameter values and t are
supplied to the forest, and 2’ and 3’ are calculated. These
values are used by Runge-Kutta integration to produce new
z and y values. The model is evaluated for the same time
period as the target system (2s). The subjective error of the
current genome is then calculated using Eqn. 3.

Once all genomes have been evaluated, deterministic crowd-
ing is again used to produce a new generation of genomes.
Mutation is as follows: For each tree, a node is selected at
random. If the node is a terminal, then the associated real
value may be replaced with a new random value in [0, 1]
(p= 0.5), or the node may be mutated (p= 0.5). If the
selected node is non-terminal, it is always mutated. Node
mutation involves the selection of a new label from the com-
bined set if the depth is less than five or from the terminal
set if the depth is equal to five. If the new label has an
arity different from the original node label, then new sub-
trees may have to be created (using the process of node
creation described above) or deleted. Crossover is also used,
in which one node from each of the parent forests may be
selected, and subtree crossover carried out (node selection
is not restricted to the same state variable tree in both par-
ent forests). The child forests are then evaluated, and those
with lower subjective errors than their associated parents
replace them. Similarity between child and parent tree is
taken to be the absolute difference between their size (num-
ber of nodes).

Evolution continues until a forest is discovered with s, <

e(= 1), or until the best model has not been replaced for
20 generations®. If at the termination of the pass the best
model has s > 1, then the most recent test is stored in
the bank; otherwise the test is added to the test suite. If
there is a test in the bank that, when added to the test
suite induces an error of s. < 2, it is withdrawn and added
to the test suite, and the next pass in the estimation phase
commences. Otherwise, the exploration phase commences
using the 10 best models output by the current pass through
the estimation phase. On the second and subsequent passes
through the estimation phase, the 10 best models from the
previous pass seed the initial random population.

4) Exploration Phase. The exploration phase is con-
ducted identically as described for parametric identification.

5) Termination. Termination occurs when 40 passes
have been made through the estimation phase.

6) Validation. The objective error of the best model
produced by each pass through the estimation phase is cal-
culated using Eqn. 5.

Symbolic I dentification Results

As for parametric identification, four algorithm variants were
formulated, and 60 independent runs were conducted for
each variant. Figure 5 illustrates the behavior of three mod-
els taken from a typical run of the fourth algorithm variant,
in which both intelligent testing and the test bank are used:
the best model after the first pass through the estimation
phase, the best model after the second pass, and the best

S¢ is greater than it was for parametric identification because
candidate models have, on average, higher s. in this case
than for parametric identification. If ¢ is too low, then all
tests are placed in the test bank and little identification
occurs.



model after the 40th pass. Each model was exposed to four
different initial conditions, and the behavior of the target
system is compared against the behavior of that model. Ta-
ble 1 reports the equations encoded by these models. The
reported equations are compressed but identical versions of
the actual encoded equations; the compression of one of the
encoded equations is shown (compression was done manu-
ally). As both the figure and table indicate, by the 40th
pass an exact model was found. Also, the second model has
captured some of the transients in the target system (Figure
5, middle panel), even though those transients occur after
the time period for which the models were evaluated. The
abilities of the models to mimic the behavior of the target
system beyond the time period for which they were evalu-
ated indicates that the models are not just matching training
data, but are successfully generalizing based on the training
data that has been collected. This ability to generalize has
been seen during the identification of other target systems
(results not shown). The good generalization is attributed
to the fact that the algorithm has the chance to find tests
that ‘break’ early overspecialization in evolved models.

Figure 4 reports the mean identification ability of the al-
gorithm variants for the given nonlinear target system. Fig-
ure 4a indicates that both intelligent testing and test diffi-
culty mediation significantly improve the algorithm’s ability
to perform symbolic identification. This is supported by the
fact that the mean performances of the three algorithm vari-
ants that lack either intelligent testing, test difficulty media-
tion produce significantly less accurate models, on average.
Figure 4b indicates that the use of these two mechanisms
allows the algorithm to produce more accurate models with
fewer target trials, compared to the other three algorithm
variants. Figure 4 also indicates that the test bank reduces
the total number of model evaluations that are performed
during a run, except for random testing with the bank. How-
ever, random testing with the test bank still produces much
more inaccurate models than intelligent testing with the test
bank.

Figure 4b indicates that intelligent testing, together with
the test bank, requires less target trials than the algorithm
variant with random testing and the test bank. The rea-
son for this is explained by Figure 6, which reports the
mean number of tests stored in the test bank after each
pass through the estimation phase for these two algorithm
variants. Clearly, the intelligent testing variant accumulates
many more tests in the bank than the variant with random
testing does. This is explained by the fact that random
testing produces, on average, ‘easy’ tests that the current
approximate models can explain such that they achieve a
subjective error below 1, and therefore the test becomes a
permanent member of the test suite, even though the objec-
tive error of the model is relatively high. However difficult
tests, such as those that produce drastic value changes dur-
ing integration, are rarely discovered through random test-
ing, although they are discovered much more often using
intelligent testing.

5. DISCUSSION AND CONCLUSIONS

In this paper we have described the use of a co-evolutionary
algorithm, the estimation-exploration algorithm, for use in
parametric and symbolic identification of nonlinear dynam-
ical systems. The co-evolution derives from the antagonis-
tic interplay between an evolving population of candidate
models, and an evolving population of tests: test fitness is
defined in terms of how much variance they induce in the
candidate models, and model fitness is defined in terms of
how closely they can match the observed behavior of the
target system when supplied with a highly fit test. Tests
that induce a lot of model variance, and are then supplied
to the target system, often produce target behavior that is
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Figure 5: The behaviors of three successive mod-
els from a typical run, and the target model. The
four columns correspond to four different tests (ini-
tial conditions indicated by IC = [z0,y0]). The three
rows correspond to the best model output by the
first, second and 40th pass through the estimation
phase, respectively. Thick lines indicate the behav-
ior of the target system; thin lines indicate the be-
havior of the model. The dotted line indicates the
time period for which the target and models were
evaluated; the behaviors of the target and models
were continued for another 3s to indicate the gener-
ality of the models.

difficult to explain using the current set of candidate models.
If this happens too often, disengagement occurs: it becomes
difficult to determine the relative fitness of models because
they all perform equally badly on the set of difficult tests.

In response to this difficulty we have here introduced a
new component to the estimation-exploration algorithm, the
test bank. The test bank is one way to ‘manage challenge’
in co-evolutionary systems. We have here introduced the
term ‘managed challenge’ to refer to any process that au-
tomatically and dynamically mediates teaching difficulty in
a co-evolutionary system in order to diminish the threat of
disengagement. Managed challenge is effected by the test
bank in the following way: tests that are currently too dif-
ficult to explain by the current best models are stored in
the bank (along with the target’s behavior in response to
this test), and those in the bank that are now close to be-
ing explained by the current best models are withdrawn and
added to the current training set. This contrasts with other
co-evolutionary methods, of which Ficici (2001) is a prime
example, in which there is no static target system which
can be used to determine whether induced disagreement is
reducing disengagement, or exacerbating it.

We have shown that for both parametric and symbolic
identification, the use of the test bank has two advantages:
first, it allows for the discovery of more accurate models;
and second, it allows for fewer target trials to be performed
because in some cases a test is withdrawn and re-explained,
rather than generating a new test to perform on the target
system. In many system identification problem domains it
is costly, slow, dangerous and alters the state of the system
if many target trials are performed, so the usual metric for
judging the quality of system identification methods is two-
fold: how accurate a model can it produce, using as few
target trials as possible.



- - - Random Testing w/ Bank

20| — Intelligent Testing w/ Bank
%15
: il
| AT

5 ?IHI—H}HHHHH’

0 10 20 30 40
Estimation Phase Pass

Figure 6: The number of tests stored in the test
bank, as a function of the number of elapsed passes
through the estimation phase, during symbolic iden-
tification.

Our method therefore improves on other evolutionary ap-
proaches to system identification [1] [11] [13] [19] [7], in
which it is assumed that training data is generated at ran-
dom. The results presented here support the claim made by
Bongard et al. [3] [2] that intelligent testing is better than
random testing because it leads to more accurate models,
on average, using the same amount of training data. How-
ever the danger of intelligent testing is that it generates too
difficult training data that is hard to explain at the outset;
the test bank mitigates this effect by allowing for the dy-
namic storage and retrieval of training data. In short, we
have shown that both intelligent testing, along with ‘man-
aged challenge’, improves model accuracy, and does so using
fewer target trials.

We are currently formulating a genetic encoding that al-
lows simultaneous parametric and symbolic identification.
We are also exploring the use of the test bank and other
‘managed challenge’ mechanisms to combat disengagement
in other co-evolutionary systems. We are also integrating
the method with automated biological experimentation sys-
tems such that evolved tests can be carried out on biological
organisms in order to infer their genetic regulatory networks.
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