A “Random Chemistry” Algorithm for Identifying Collections of Multiple Contingencies That Initiate Cascading Failure

Margaret J. Eppstein and Paul D. H. Hines, Member, IEEE

Abstract—This paper describes a stochastic “Random Chemistry” (RC) algorithm to identify large collections of multiple \((n - k)\) contingencies that initiate large cascading failures in a simulated power system. The method requires only \(O(\log(n))\) simulations per contingency identified, which is orders of magnitude faster than random search of this combinatorial space. We applied the method to a model of cascading failure in a power network with \(n = 2896\) branches and identify \(148,243\) unique, minimal \(n - k\) branch contingencies \((2 \leq k \leq 5)\) that cause large cascades, many of which would be missed by using pre-contingency flows, linearized line outage distribution factors, or performance indices as screening factors. Within each \(n - k\) collection, the frequency with which individual branches appear follows a power-law (or nearly so) distribution, indicating that a relatively small number of components contribute disproportionately to system vulnerability. The paper discusses various ways that RC generated collections of dangerous contingencies could be used in power systems planning and operations.

Index Terms—Cascading failure, contingency screening, power systems reliability.

I. INTRODUCTION

POWER systems are generally operated according to the \((n - 1)\) security criterion, where any single one of \(n\) components can fail without violating bus voltage, branch flow, or stability limits. This approach works well if the probability of \(k\) multiple, nearly simultaneous failures \((n - k)\) contingencies is vanishingly small. However, \(n - k\) contingencies do occur and sometimes trigger sequences of cascading outages that result in large blackouts, such as the events of August 14, 2003 in North America [1] and November 4, 2006 in Europe [2]. Because blackout sizes have a power-law (scale-free) size distribution [3], the risk due to multiple, simultaneous outages is large, despite the relatively small probabilities of these events. As a result, North American reliability standards now require that, “Each Transmission Operator shall operate to protect against instability, uncontrolled separation, or cascading outages resulting from multiple outages” [4].

In order to meet current standards, there is a need for tools to support efficient \(n - k\) analysis. However, the computational complexity of finding high-impact \(n - k\) contingencies makes complete enumeration and random search infeasible. Exhaustive \(n - k\) analysis requires \(n!/(n - k)!k!\) simulations if we assume that sequence matters, and \(n!/(k!\cdot(n - k)!k!\) if sequence is ignored [5]. For a system with \(n = 10^8\) components that could fail, simulating all \(n - 3\) contingencies would require more than \(10^{11}\) simulations, which is computationally infeasible. Due to the size of the search space, random search methods such as Monte Carlo simulation are not sufficient.

Numerous techniques have been proposed to reduce the computational burden associated with multiple contingency analysis. The earliest contingency screening methods involved developing a performance metric that correlates to system stress, and evaluating the sensitivity of this metric to various component outages (e.g., [6] and [7]). For multiple contingency analysis, [8] proposes a method that uses event trees and substation configuration data to identify collections of probable multiple-failure combinations. Reference [9] describes a method to identify collections of \(n - k\) contingencies that result in overloaded transmission lines using line outage distribution factors (see Section IV-F). Optimization methods have also been proposed to identify high-impact \(n - k\) contingencies [10]–[12]. Such optimization approaches can identify small sets of the highest-impact vulnerabilities, but are not designed to identify large unbiased collections for statistical analysis.

Most existing screening and optimization methods are based on identifying disturbances that result in limit violations. However, the presence of a limit violation is not a sufficient condition for a cascading failure. In many cases, limit violations are eliminated after one or two subsequent component outages and do not result in significant loss of load (e.g., the small cascade of July 3, 1996 [13]).

A method that could efficiently identify large unbiased collections of \(n - k\) contingencies that lead to cascading failure could be useful for a variety of planning and operations applications in power systems engineering. Such collections could be used to provide valuable insight into the risk associated with large blackouts (e.g., by serving as input to risk estimation methods [14], [15]), estimate a system’s cascading outage propagation rate [16], or serve as test scenarios in assessing the
efficacy of a given procedure or control system designed to protect against cascading outages. Along planning time horizons, knowing the relative contributions that individual components make to $n - k$ vulnerability could be used to prioritize components for upgrades or preventative maintenance (such as checking for hidden relay failures). Subsequently, the method could be used to estimate how upgrades to these components would impact the resulting dangerous contingency collections. For operational time scales, the method could be used to flag transmission lines that contribute disproportionately to multiple contingency vulnerability in order to assist operators with decisions that affect power flow on these lines.

Thus motivated, the goal of this paper is to describe a search method for efficiently identifying large collections of minimal $n - k$ contingencies (for k simultaneous outages) that lead to large cascading failures in a simulated power system. Our paper is organized as follows. Section II describes the proposed search method and the cascading failure simulator with which we test the search, and Section III describes the test grid used in the experiments. Section IV describes experimental results that illustrate the method and some patterns in the resulting contingency sets. We provide some discussion and conclusions in Section V.

II. ALGORITHMS

A. Random Chemistry (RC) Algorithm

We have developed a stochastic approach for rapidly identifying a minimal simultaneous $n - k$ contingency that results in system failure. By “minimal”, we mean that no smaller subset of the k outages result in system failure. Here we will use U to represent the universal set of all n possible outages, and we assume that the system is initially $n - 1$ secure. “System failure” is defined as a sequence of cascading outages that exceeds some user-specified blackout size criterion. For brevity, we hereafter use the phrase “malignancy” or “malignant contingency” to mean a minimal set of k outages that result in system failure.

Our approach was originally inspired by Kauffman [17], who outlined a simple hypothetical nonlinear feature-set selection procedure [dubbed “Random Chemistry” (RC)] for stochastically detecting small auto-catalytic sets of k nonlinearly interacting molecules out of a large number of n candidate molecules, in only $O(\log(n))$ steps. More recently, Eppstein et al. [18] adapted this idea into an algorithm for finding k epistatically-interacting genetic variations that predispose for disease in genome-wide association studies.

The paragraphs that follow describe a version of the RC algorithm adapted to find $n - k$ malignancies in a power system.

RC Step 1: Search for a (large, non-minimal) random set S of component outages that causes system failure. An initial target set size k_{init} is specified, and random combinations of outages of components in U, each of size k_{init}, are tested until a set S is found that causes the system to fail. If no such set is found within some constant number of tries T, the target set size k_{init} is doubled (although it is truncated to a maximum size of n) and the process is repeated. As long as k_{init} is sufficiently large, this step typically requires only one or a few tries, since it is trivial to find a large (non-minimal) set of outages that cause system failure. In the worst case, this step is guaranteed to terminate successfully when $S = U$, so is upper bounded by $O(\log(2(1 + k_{\text{init}})))$ trials. For the results in this paper, we used $k_{\text{init}} = 80$ and $T = 20$.

RC Step 2: Reduce the size of the discovered set S by stochastically reducing the set by a constant fraction. Up to T random subsets of S, each of size $|S|/C$ (truncated to not less than a final target set size k_{max}) for some small constant C, are tested until a new subset S_2 is found that still causes system failure. S is then replaced by S_2 and the process is repeated until $|S| = k_{\text{max}}$, where k_{max} is a small positive integer that provides an upper bound on the malignancy size k sought by the algorithm. If, at any point, the number of attempts surpasses the specified maximum number of tries T, this RC search run is aborted and is considered a “failed” RC trial. (Note, however, that a “failed” RC trial simply implies that the smallest minimal $n - k$ malignancy contained in S probably has $k > k_{\text{max}}$, which is larger than what we are seeking.) This set reduction step is upper bounded by $O(\log(C(k_{\text{init}} - k_{\text{max}})))$ trials, where $k_{\text{max}} < k_{\text{init}} \leq n$. To reduce the number of aborted runs, we use a larger (more aggressive) $C = 2$ when the set size is greater than 20, and then reduce C to 1.5 for $|S| \leq 20$.

RC Step 3: Prune individual outages from the remaining set S until a minimal $n - k$ malignancy is identified. Individual components are tested for possible removal from S, until a minimal malignant subset is identified (that is, the resulting set of outages S results in system failure, but no smaller subset of S does). This step requires between $k_{\text{max}} - 2$ and $\sum_{i=3}^{k_{\text{max}}-1} i$ simulations.

Each execution of the RC algorithm (comprising RC Steps 1–3, above) is thus upper bounded by $O(\log(n))$ grid simulations, as graphically depicted in Fig. 1. The specific number of trials required to achieve a “successful” RC run (i.e., when RC Step 2 succeeds in reducing $|S|$ to k_{max}), and the number of simulations per RC run, both vary stochastically and are a function of the particular grid as well as the RC parameter settings. The runtime of the RC algorithm is relatively insensitive to the choice of the initial set size k_{init}. However the choice of the constant k_{max} is more important. If k_{max} is too large, then the runtime becomes dominated by RC Step 3 (which, although is technically upper bounded by a constant time, requires up to $\sum_{i=3}^{k_{\text{max}}-1} i$ simulations). On the other hand, if k_{max} is too small, then there is a higher probability that RC Step 2 will fail, since it becomes increasingly likely that the smallest minimal $n - k$ malignancy contained in S is larger than k_{max}. In practice, we observe that choosing $k_{\text{max}} - 5$ provides a good balance between these constraints.

B. Obtaining Large Collections of Malignancies

The RC algorithm is repeated as many times as desired to sample the space of $n - k$ minimal malignancies (for $2 < k < k_{\text{max}}$). Since RC trials are independent, the likelihood that a duplicate malignancy will be found increases as the collection of identified malignancies grows. If one has identified j out of m_k malignancies (for a given k), of which i are unique, then the probability p_j that the next $n - k$ malignancy found is unique is

$$p_j = \frac{m_k - i}{m_k}.$$

(1)
EPPSTEIN AND HINES: “RANDOM CHEMISTRY” ALGORITHM FOR IDENTIFYING COLLECTIONS OF MULTIPLE CONTINGENCIES

If a sufficient fraction of the complete collection of malignancies for a given k is identified, then the rate of change in p_j becomes observable. We can take advantage of this to estimate the size of the complete collection m_k, as follows. Taking the reciprocal of (1), the expectation is that the next unique $n - k$ malignancy will be found after a total of $\Delta_j = p_j^{-1}$ additional $n - k$ malignancies have been found. Solving for m_k yields the expected value:

$$m_k = \frac{i \Delta_j}{\Delta_j - 1}. \quad (2)$$

As $i \rightarrow m_k$, the error in this estimate of m_k decreases. The error can be further damped by averaging over successive estimates of m_k as j is further increased (skipping the singularities in m_k where the observed $\Delta_j = 1$).

The stochastic set reduction approach of the RC algorithm is inherently biased toward finding malignancies with lower k, by virtue of the fact that the number of contained subsets of size k is largest for $k = |S|/2$, in conjunction with the observation that the frequency with which a random subset of a given size k causes system failure decreases with increasing k (see Section IV). However, as long as a uniform random number generator is used for selecting subset components in RC Steps 1 and 2, the pruning of components in RC Step 3 is done in a uniformly randomly permuted order, and the search is terminated when the first minimal $n - k$ malignancy is identified during pruning, then repeated application of RC search will yield unbiased collections of $n - k$ malignancies, for a given k. Alternatively, if the aim is to further decrease the search time and increase the success rate of individual RC trials, one could elect to non-uniformly bias the selection of subsets (e.g., by selecting branch components with probabilities corresponding to pre-contingency flows) in RC Steps 1 and 2, and to exhaustively search for and return all minimal $n - k$ malignancies embedded in the final set S in RC Step 3. However, doing so would necessarily propagate this sampling bias into the resulting collection of $n - k$ malignancies.

C. Cascading Failure Simulator (CFS)

The modeling of cascading failure in power systems is a challenging problem. There are many mechanisms by which a small set of disturbances can propagate to become large blackouts, including cascading thermal overloads, relay failure, voltage collapse, dynamic instability, and operator error [5]. Different modeling approaches have advantages and disadvantages in terms of capturing subsets of these mechanisms [19]. High-level statistical models [16], [20] provide high-level information about system risk, but are not designed to identify specific components that contribute to risk. Some have presented work on purely topological models of cascading failure [21]; however, the flow patterns in these models differ substantially from those described by Kirchhoff’s and Ohm’s laws, and therefore need to be treated with caution [22]. Models of cascading failure that are based on a dc power flow, such as OPA [23], [24], are computationally efficient and numerically stable and thus facilitate statistical observations from large numbers of simulations. However, dc power flow models have known limitations [25], and cannot capture some aspects of cascading failure, such as dynamic instability, voltage collapse, or distance relays. Sequential static cascading failure models based on the ac power flow exist [26], [27], but are more computationally intensive and require that one make assumptions to handle power-flow cases that do not converge. Dynamic, mid/long-term transient stability models of specific historical cascading failures exist (e.g., [28]); however, these models tend to require extensive calibration and are very computationally expensive. Even a full dynamic model of cascading failure requires assumptions, since operator behavior is almost always a critical component to cascading failure, and many of the system parameters (such as area control error management procedures) are unknown.

Thus, all cascading failure models simplify power system dynamics to some extent. Because this paper focuses on the evaluation of the RC algorithm, and because there is not yet a generally accepted and publicly available ac power flow model of cascading failure, the simulator used here is based on the dc power flow approximations (modified from [22]). The simulator...
contingency results in system failure. The algorithm flow diagram for the cascading failure simulator (CFS) used in this study is shown in Fig. 2.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
III. Test Network

We applied the RC search method to identify minimal $n-k$ contingencies that trigger system failure in a model of the 2004 peak winter Polish transmission system, which is available with MATPOWER [31]. The test case has $n = 2896$ branches (transmission lines and transformers), 2383 buses, and 24.6 GW of load. The pre-contingency dc branch power flows have a mean of 34.3 MW, median of 18.7 MW, standard deviation of 53.8 MW, and maximum of 918 MW. We increased 12 of the initial branch flow limits to achieve a pre-contingency power flow case such that no single branch outage could trigger cascading system failure, as defined below. After doing so, all of the pre-contingency flows were less than 95.2% of their long-term (Rate A) limits. With the case thus prepared, we applied the RC method with U defined as the set of all 2896 branches in the network.

For the results presented here, “system failure” is defined as a state in which at least 10% of the buses are no longer connected to the largest island. While various definitions of system failure could be employed, we selected a network-separation-based measure of system disruption, rather than a load-shed-based one, for several reasons. Most importantly, the method chosen to rebalance supply and demand after the grid separates into islands becomes increasingly important as the network subdivides. Once significant network separation occurs, the system is clearly in a dangerous state, but the size of the blackout that will result depends heavily on automated control and operator actions, making the simulation results increasingly uncertain. To compare load shedding and network separation metrics, we measured the blackout sizes in MW and fraction of nodes separated for all $n-k$ contingencies in the test network that were either predicted by (4) to cause overloads or found by the RC method to cause separation of at least 10% of the buses. The histogram in Fig. 3 shows a tri-modal distribution, with a natural break between the lowest and middle modes at 15% separation (for clarity, we only show contingencies resulting in at least 3% separation). All of the disruptions larger than 15% separation caused a loss of at least 1727 MW of power (Fig. 3, right panel); by lowering the threshold to the more conservative 10% separation, we were able to detect all of the disruptions in the middle and highest modes, as well as most (all but 5) of the disruptions in the lowest mode that also caused a power loss of at least 1727 MW (Fig. 3, right panel, above and to the right of the dashed lines).

IV. Results

A. Collections of Malignancies Identified With RC Search

We report on 735 500 successful RC trials, in which we identified a total of $\{336, 25\,059, 95\,677, 27\,171\}$ unique $\{n-2, n-3, n-4, n-5\}$ malignancies, respectively. It is highly likely that the 336 unique $n-2$ malignancies found form a complete collection, since no new $n-2$ malignancies were found in over 7×10^5 successful RC trials after the last unique $n-2$ malignancy was identified (Fig. 4); this number also agrees closely with the estimate of $n_2 = 338$ obtained using the method described in Section II-B. The asymptotic behavior of the $n-3$ curve (Fig. 4) implies that the identified collection of unique $n-3$ malignancies is approaching completion, and we estimate $n_3 = 2.69 \times 10^6$. On the other hand, the identified collections of unique $n-4$ and $n-5$ malignancies are far from complete, as most newly identified $n-4$ and $n-5$ sets continued to be unique (Fig. 4).

In 1000 successful RC trials on this system and with these settings, we observed that it took an average of 1.57 RC trials to successfully find an $n-k$ malignancy, for $2 < k < 5$. Some of these RC trials required as few as 12 simulations, while others required up to 147 simulations, with a mean of 48 simulations per RC trial. On the test system with $k_{\text{max}} = 5$, we identified minimal malignant sets with $k = \{2, 3, 4, 5\}$ in $\{50\%, 30\%, 16\%, 4\%\}$ of the successful RC trials, respectively. Thus, for this system, it typically requires an average of only about 151, 251, 471, and 1884 ($= 48 \times 1.57 \times 100 / \{50, 30, 16, 4\}$) simulations to find an $n-\{2, 3, 4, 5\}$ malignancy, respectively.

B. Efficiency of RC Search versus Random Search

The expected number of simulations required to find one out of 336 $n-2$ malignancies using random search on this grid...
would be \(12476 = \binom{2896}{2}/336\). Using our estimate of \(m_3\), the expected number of simulations required to find an \(n - k\) malignancy using random search on this grid is about \(150000 \approx \binom{2896}{3}/(2.69 \times 10^4)\). Thus, random search requires about 85 times as many simulations as RC search to find an \(n - 2\) malignancy in this grid model, and about 600 times as many simulations as RC search to find an \(n - 3\) malignancy. While it is impossible to reasonably estimate the number of \(n - 4\) or \(n - 5\) malignancies in this system (since these curves in Fig. 4 have not begun to asymptote), and empirical studies using random search yielded too few \(n - 4\) or \(n - 5\) malignancies to reliably estimate success rates, it is likely that the relative efficiency of RC search compared to random search continues to grow as \(k\) increases.

C. Individual Branch Contributions to System Vulnerability

Out of the 2896 branches in the system, we observed a total of 192, 1812, and 2487 individual branches that occurred in at least one \(n - \{2, 3, 4\}\) malignancy, respectively. [Since the \(k - 5\) collection is so small (Fig. 4), we have omitted these data from this subsection.] The frequencies with which branches occurred in \(n - k\) malignancies follow very heavy-tailed distributions with modes at 0 (Fig. 5). The (presumably complete) \(n - 2\) collection of malignancies exhibits a strong fit to a power law distribution \((R^2 = 0.96)\). The frequency distributions for higher \(k\) malignancies span several orders of magnitude and appear to be approaching power law distributions (with shallower slopes at higher \(k\)), but show more truncated tails (Fig. 5), probably resulting from the fact that these collections are not complete.

Most branch outages never or rarely interacted with other branch outages to trigger cascading failures (Fig. 5, points near the left). In this study, 98.7%, 98.1%, and 96.7% of all branches occurred in \(\leq 1\)% of the \(n - \{2, 3, 4\}\) malignancies, respectively. Conversely, a few branches appeared in very large numbers of malignancies (Fig. 5, points in the heavy tails on the right), and thus contributed disproportionately to system vulnerability. For example, in this system, one branch occurred in 112 (33% of all) \(n - 2\) malignancies. As \(k\) increased, several

Fig. 5. Number of times each of the 2896 individual branches occurred in the observed \(n - k\) malignancies (top), and the complementary cumulative distribution functions of these data (bottom). Note that the \(x\)-axes have been shifted to the right by one so that branches occurring in zero malignancies are shown at the far left, with counts indicated.

individual branches were found to occur in thousands of malignancies. However, owing to the large numbers of malignancies at high \(k\), no single branch occurred in more than 17% of the identified \(n - 3\) malignancies or in more than 6% of the identified \(n - 4\) malignancies. Practically speaking, this means that as \(k\) increases, it becomes increasingly difficult to predict which line failures contribute to system vulnerability based on metrics designed for \(n - 1\) or \(n - 2\) contingency screening.

D. Power Flow Characteristics of Branches in Malignancies

When a transmission line or transformer fails, the current that was previously moving through that branch is immediately re-routed to parallel paths to satisfy Kirchhoff’s and Ohm’s laws. Thus, the more power that is interrupted by the outage, the more the flows on parallel transmission paths will increase, or decrease, which may result in an overloaded component and trigger a cascade. Therefore, it seems reasonable to conjecture that there is a relationship between the amount of power flowing through a transmission line and the frequency with which it occurs in \(n - k\) malignancies. Consequently, we compared the distributions of pre-contingency branch flows in the system as a whole, with those of the branches that occur in various \(n - k\) malignancies. While the maximum and sum of the pre-contingency flows in all \(k\)-branches participating in a given \(n - k\) malignancy tends to be relatively high (Fig. 6, columns 2 and 3, respectively), the minimum pre-contingency flow of one of the \(k\) branches in a malignancy may be quite low, especially as \(k\) increases (Fig. 6, column 1). This indicates that in many cases, the joint failure of a large transmission line and one or more small ones can interact to trigger large blackouts. If conventional contingency screening methods were used to initially prune out transmission lines and transformers with less than 50 MW from the set of possible component outages \((U)\), 12% of the \(n - 2\) malignancies would not have been found, and the problem gets worse as \(k\) increases. Doing so would have hidden \((49\%, 62\%, 83\%)\) of the \(n - \{3, 4, 5\}\) malignancies found in these experiments, respectively.

E. Malignant versus Flow-Matched Benign Pairs

We selected 336 new pairs of branch outages, such that the distributions of the minimum, maximum, and sum of the pre-contingency flows in these 336 new branch pairs were statistically identical to those of the 336 \(n - 2\) malignancies (KS test, \(p > 0.99\)). We verified that none of these new pairs triggered system failure, and henceforth refer to them as “benign pairs”. We then searched for network features that might distinguish malignant from benign pairs. To date, we have found no significant differences in the distributions of individual branch metrics, including pre-contingency flow and measures of network centrality, applied to the 115 branches that occur in malignant but not benign pairs versus the 134 branches that occur in these benign pairs but not malignant pairs. We have found significant differences in the distributions of some pairwise metrics, including 1) the minimum electrical distances between branch pairs (KS test, \(p < 2.5 \times 10^{-5}\)) and 2) the minimum shortest path (in number of hops) between branch pairs (KS test, \(p < 4.5 \times 10^{-15}\)). In both cases, the distribution of malignant pairs
malignancies, for branches, the second column shows the maximum pre-
contingencies with a post-contingency change in per-
max-
and the technique in [9] as
Due to these interactions, pre-
, the search space is re-
If one were to screen
branches, and the third column shows the sum of
contingencies that result in large black-
resulting from the simultaneous
branch ma-
, which provided improved
, with
branches.
that result in large cascading failures.
can be computed using line outage simulation to identify those that result in large cascading failure.
be used to detect malignant contingencies without simulation,
F. Assessment of Performance Indices
Finally, we examined to what extent performance indices can
be used to detect malignant contingencies without simulation, or to reduce the search space so that fewer contingencies need simulation to identify those that result in large cascading failure. The change in flows \(\Delta f_{i|\tau} \) resulting from the simultaneous outage of branches \(r \) and \(s \) can be computed using line outage distribution factors \((d_{i|s}) \) [32] and the technique in [9] as
\[
\Delta f_{i|\tau} = \left[d_{i|r} - d_{i,r,s} \right] \left[\begin{array}{c} 1 \\ -d_{s,r} \\ 1 \end{array} \right]^{-1} \left[\begin{array}{c} f_{r} \\ f_{s} \end{array} \right].
\] (4)
Computing \(\Delta f_{i|\tau} \) for all 4 191 960 branch pairs in the test system indicated that 186 428 pairwise branch outages would result in branch overloads. Of these, only 220 resulted in system failure in the simulator. On the other hand, because line outage distribution factors do not return values for cases that separate a network into islands, 116 of the \(n - 2 \) malignancies found by RC search were not flagged as overloads using (4).
Equations (4) can be used to produce a performance index for double line outages, following the method of [6], as
\[
P_{\tau_{I}} = \sum_{i=1}^{n} \left(\frac{f_{i} + \Delta f_{i|\tau}}{f_{i}} \right)^{2}
\] (5)
where \(w_{i} \) is a branch weight, and \(f_{i} \) is a measure of flow (power or current) on branch \(i \), with flow limit \(f_{i} \). For the results reported here, we set the weights to normalized pre-contingency branch flows \(w_{i} = f_{i}/\sum_{j=1}^{n} f_{j} \), which provided improved results over the case with \(w_{i} = 1, \forall i \). If one were to screen out \(n - 2 \) contingencies with a post-contingency change in performance index of \(\Delta P_{\tau_{I}} > 10^{-2} \), the search space is reduced by only 91%, but doing so would preclude the identification of 4% of the \(n - 2 \) malignancies. At a higher threshold of \(\Delta P_{\tau_{I}} > 10^{-2} \), the size of the search space would be reduced by 3 orders of magnitude, but 42% of the malignancies would be eliminated from the search set.

V. DISCUSSION AND CONCLUSIONS
This paper describes a stochastic method to identify large collections of minimal \(n - k \) contingencies that result in large blackouts in a cascading failure simulator. The RC algorithm requires only \(O(\log(n)) \) simulations per dangerous contingency (malignancy) found, which is orders of magnitude more efficient than random search for realistically sized grids.
We applied the RC method to a 2383-bus power system model and identified 148 243 unique, simultaneous \(n - k \) branch malignancies \(2 \leq k \leq 5 \) that result in large cascading failures. The results show a number of interesting patterns that illustrate the utility of the RC algorithm. First, the results indicate that the frequencies with which individual branches interact to trigger large blackouts follow power law (or nearly so) distributions. The heavy tails on these distributions indicate that a small number of branches occur in orders of magnitude more blackout scenarios than the majority of branches. Improvements at these locations may have (at least near-term) reliability benefits. Second, we found that outages in branches with seemingly insignificant amounts of pre-contingency power flow can interact with failures in larger transmission lines to initiate very large cascading failures, and that the probability of such interactions increases with increasing \(k \). Due to these interactions, pre-screening branches based on low pre-contingency power flow would preclude identification of many \(n - k \) malignancies. Finally, our results indicate that, even when using a linearized power system model, direct linearized methods, such as line outage distribution factors and performance indices, do not predict which combination of outages will result in large cascading failures well enough to preclude the need for simulation.
Future work will investigate how this algorithm might be incorporated into power system applications. For example, importance sampling techniques can be used to combine prior information about the probability and importance of component failures to generate estimates of blackout risk [14], [15]; the RC method could be used to generate unbiased importance distributions of component outages (see Section IV-C) to be used as input to such risk estimation approaches. This approach could be extended for evaluation of the blackout risk effects of wide area control schemes or system upgrades by simulating these changes and using the RC method to re-estimate collections of multiple contingencies.
The results in this paper were produced assuming that the \(k \) branch outages occur simultaneously. While we acknowledge that order and timing can have important effects, we have not yet explored the sensitivity of system failure to the \(k! \) possible orders (each with various timings) of the identified \(n - k \) malignancies. Similarly, our results were produced from a power system model that captures only a subset of cascading failure mechanisms. Future work will employ more detailed cascading failure simulation models, explore the sensitivity of the results to modeling assumptions, and evaluate the impact of order and timing on cascading failures.
ACKNOWLEDGMENT

The authors would like to thank D.M. Rizzo and three anonymous reviewers for constructive suggestions that helped to improve this paper.

REFERENCES

Margaret J. Eppstein received the B.S. degree in zoology from Michigan State University in 1978 and the M.S. degree in computer science and the Ph.D. degree in environmental engineering from the University of Vermont, Burlington, in 1983 and 1997, respectively.

She is an Associate Professor in the Department of Computer Science at the University of Vermont, where she has been a faculty member since 1983 (Lecturer from 1983–2001; Research Assistant Professor from 1997–2002; Assistant Professor from 2002–2008; Associate Professor since 2008), and was founding Director of the University of Vermont Complex Systems Center from 2006–2010. Her current research interests involve forward and inverse modeling and analysis of complex systems in a wide variety of application domains, including biological, environmental, technological, and social systems.

Paul D. H. Hines (S’96–M’07) received the M.S. degree in electrical engineering from the University of Washington, Seattle, in 2001 and the Ph.D. degree in engineering and public policy from Carnegie Mellon University, Pittsburgh, PA, in 2007.

He is an Assistant Professor in the School of Engineering at the University of Vermont, Burlington. Formerly he worked at the U.S. National Energy Technology Laboratory, the U.S. Federal Energy Regulatory Commission, Alstom ESCA, and for Black and Veatch. His main research interests are in the areas of complex systems and networks, cascading failures in power systems, wind integration, and energy security policy.