Introduction to

Information Retrieval

CS276: Information Retrieval and Web Search
Christopher Manning and Prabhakar Raghavan

Part 1. Clustering (by textbook authors)
Part 2. Clustering Labeling (Li & Wu 2010)
Part 1. Today’s Topic: Clustering

- Document clustering
 - Motivations
 - Document representations
 - Success criteria
- Clustering algorithms
 - Partitional
 - Hierarchical
What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
 - Documents within a cluster should be similar.
 - Documents from different clusters should be dissimilar.
- The commonest form of *unsupervised learning*
 - Unsupervised learning = learning from raw data, as opposed to supervised data where a classification of examples is given
 - A common and important task that finds many applications in IR and other places
How would you design an algorithm for finding the three clusters in this case?
Applications of clustering in IR

- Whole corpus analysis/navigation
 - Better user interface: search without typing
- For improving recall in search applications
 - Better search results (like pseudo RF)
- For better navigation of search results
 - Effective “user recall” will be higher
- For speeding up vector space retrieval
 - Cluster-based retrieval gives faster search
Yahoo! Hierarchy *isn’t* clustering but *is* the kind of output you want from clustering

www.yahoo.com/Science
Google News: automatic clustering gives an effective news presentation metaphor
Scatter/Gather: Cutting, Karger, and Pedersen
For visualizing a document collection and its themes

- Wise et al, “Visualizing the non-visual” PNNL
- ThemeScapes, Cartia
 - [Mountain height = cluster size]
For improving search recall

- *Cluster hypothesis* - Documents in the same cluster behave similarly with respect to relevance to information needs
- Therefore, to improve search recall:
 - Cluster docs in corpus a priori
 - When a query matches a doc D, also return other docs in the cluster containing D
- Hope if we do this: The query “car” will also return docs containing *automobile*
 - Because clustering grouped together docs containing *car* with those containing *automobile*.

Why might this happen?
For better navigation of search results

- For grouping search results thematically
 - clusty.com / Vivisimo
Issues for clustering

- Representation for clustering
 - Document representation
 - Vector space? Normalization?
 - Centroids aren’t length normalized
 - Need a notion of similarity/distance

- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid “trivial” clusters - too large or small
 - If a cluster's too large, then for navigation purposes you've wasted an extra user click without whittling down the set of documents much.
Notion of similarity/distance

- Ideal: semantic similarity.
- Practical: term-statistical similarity
 - We will use cosine similarity.
 - Docs as vectors.
 - For many algorithms, easier to think in terms of a *distance* (rather than *similarity*) between docs.
 - We will mostly speak of Euclidean distance
 - But real implementations use cosine similarity
Clustering Algorithms

- Flat algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - (Model based clustering)

- Hierarchical algorithms
 - Bottom-up, agglomerative
 - (Top-down, divisive)
Hard vs. soft clustering

- Hard clustering: Each document belongs to exactly one cluster
 - More common and easier to do
- Soft clustering: A document can belong to more than one cluster.
 - Makes more sense for applications like creating browsable hierarchies
 - You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes
 - You can only do that with a soft clustering approach.
- We won’t do soft clustering today. See IIR 16.5, 18
Partitioning Algorithms

- Partitioning method: Construct a partition of \(n \) documents into a set of \(K \) clusters
- Given: a set of documents and the number \(K \)
- Find: a partition of \(K \) clusters that optimizes the chosen partitioning criterion
 - Globally optimal
 - Intractable for many objective functions
 - Ergo, exhaustively enumerate all partitions
 - Effective heuristic methods: \(K \)-means and \(K \)-medoids algorithms
K-Means

- Assumes documents are real-valued vectors.
- Clusters based on *centroids* (aka the *center of gravity* or mean) of points in a cluster, \(c \):

\[
\bar{\mu}(c) = \frac{1}{|c|} \sum_{\tilde{x} \in c} \tilde{x}
\]

- Reassignment of instances to clusters is based on distance to the current cluster centroids.
 - (Or one can equivalently phrase it in terms of similarities)
K-Means Algorithm

Select K random docs $\{s_1, s_2, \ldots, s_K\}$ as seeds.

Until clustering *converges* (or other stopping criterion):

For each doc d_i:

Assign d_i to the cluster c_j such that $\text{dist}(x_i, s_j)$ is minimal.

(*Next, update the seeds to the centroid of each cluster*)

For each cluster c_j

\[s_j = \mu(c_j) \]
K Means Example

(K=2)

- Pick seeds
- Reassign clusters
- Compute centroids
- Reassign clusters
- Compute centroids
- Reassign clusters
- Converged!
Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations.
 - Doc partition unchanged.
 - Centroid positions don’t change.

Does this mean that the docs in a cluster are unchanged?
Convergence

- Why should the K-means algorithm ever reach a fixed point?
 - A state in which clusters don’t change.
- K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm.
 - EM is known to converge.
 - Number of iterations could be large.
 - But in practice usually isn’t
Convergence of K-Means

- Define goodness measure of cluster k as sum of squared distances from cluster centroid:
 - $G_k = \sum_i (d_i - c_k)^2$ (sum over all d_i in cluster k)
 - $G = \sum_k G_k$

- Reassignment monotonically decreases G since each vector is assigned to the closest centroid.
Convergence of \(K\)-Means

- Recomputation monotonically decreases each \(G_k \) since \((m_k \) is number of members in cluster \(k)\):
 - \(\Sigma (d_i - a)^2 \) reaches minimum for:
 - \(\Sigma -2(d_i - a) = 0 \)
 - \(\Sigma d_i = \Sigma a \)
 - \(m_k \cdot a = \Sigma d_i \)
 - \(a = (1/ m_k) \Sigma d_i = c_k \)
 - \(K\)-means typically converges quickly
Time Complexity

- Computing distance between two docs is $O(M)$ where M is the dimensionality of the vectors.
- Reassigning clusters: $O(KN)$ distance computations, or $O(KNM)$.
- Computing centroids: Each doc gets added once to some centroid: $O(NM)$.
- Assume these two steps are each done once for I iterations: $O(INKM)$.
Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
 - Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
 - Try out multiple starting points
 - Initialize with the results of another method.

Example showing sensitivity to seeds

In the above, if you start with B and E as centroids you converge to \{A,B,C\} and \{D,E,F\}
If you start with D and F you converge to \{A,B,D,E\} \{C,F\}
K-means issues, variations, etc.

- Recomputing the centroid after every assignment (rather than after all points are re-assigned) can improve speed of convergence of *K*-means.
- Assumes clusters are spherical in vector space
 - Sensitive to coordinate changes, weighting etc.
- Disjoint and exhaustive
 - Doesn’t have a notion of “outliers” by default
 - But can add outlier filtering
How Many Clusters?

- Number of clusters K is given
 - Partition n docs into predetermined number of clusters
- Finding the “right” number of clusters is part of the problem
 - Given docs, partition into an “appropriate” number of subsets.
 - E.g., for query results - ideal value of K not known up front
 - though UI may impose limits.
- Can usually take an algorithm for one flavor and convert to the other.
K not specified in advance

- Say, the results of a query.
- Solve an optimization problem: penalize having lots of clusters
 - application dependent, e.g., compressed summary of search results list.
- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters
K not specified in advance

- Given a clustering, define the Benefit for a doc to be the cosine similarity to its centroid
- Define the Total Benefit to be the sum of the individual doc Benefits.

Why is there always a clustering of Total Benefit n?
Penalize lots of clusters

- For each cluster, we have a Cost C.
- Thus for a clustering with K clusters, the Total Cost is KC.
- Define the Value of a clustering to be $= \text{Total Benefit} - \text{Total Cost}$.
- Find the clustering of highest value, over all choices of K.
 - Total benefit increases with increasing K. But can stop when it doesn’t increase by “much”. The Cost term enforces this.
Hierarchical Clustering

- Build a tree-based hierarchical taxonomy (*dendrogram*) from a set of documents.

- One approach: recursive application of a partitional clustering algorithm.

```
animal
  
  vertebrate
  
  fish reptile amphib. mammal

  invertebrate
  
  worm insect crustacean
```
Dendrogram: Hierarchical Clustering

- Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.
Hierarchical Agglomerative Clustering (HAC)

- Starts with each doc in a separate cluster
 - then repeatedly joins the closest pair of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.
Closest pair of clusters

- Many variants to defining closest pair of clusters
 - Single-link
 - Similarity of the most cosine-similar (single-link)
 - Complete-link
 - Similarity of the “furthest” points, the least cosine-similar
 - Centroid
 - Clusters whose centroids (centers of gravity) are the most cosine-similar
 - Average-link
 - Average cosine between pairs of elements
Single Link Agglomerative Clustering

- Use maximum similarity of pairs:

\[
sim(c_i, c_j) = \max_{x \in c_i, y \in c_j} \sim(x, y)
\]

- Can result in “straggly” (long and thin) clusters due to chaining effect.

- After merging \(c_i\) and \(c_j\), the similarity of the resulting cluster to another cluster, \(c_k\), is:

\[
\sim((c_i \cup c_j), c_k) = \max(\sim(c_i, c_k), \sim(c_j, c_k))
\]
Single Link Example
Complete Link

- Use minimum similarity of pairs:

\[sim(c_i, c_j) = \min_{x \in c_i, y \in c_j} sim(x, y) \]

- Makes “tighter,” spherical clusters that are typically preferable.

- After merging \(c_i \) and \(c_j \), the similarity of the resulting cluster to another cluster, \(c_k \), is:

\[sim((c_i \cup c_j), c_k) = \min(sim(c_i, c_k), sim(c_j, c_k)) \]
Complete Link Example
Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of N initial instances, which is $O(N^2)$.
- In each of the subsequent $N-2$ merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall $O(N^2)$ performance, computing similarity to each other cluster must be done in constant time.
 - Often $O(N^3)$ if done naively or $O(N^2 \log N)$ if done more cleverly
Group Average

- Similarity of two clusters = average similarity of all pairs within merged cluster.

\[
sim(c_i, c_j) = \frac{1}{|c_i \cup c_j||c_i \cup c_j| - 1} \sum_{\bar{x} \in (c_i \cup c_j)} \sum_{\bar{y} \in (c_i \cup c_j): \bar{y} \neq \bar{x}} \sum sim(\bar{x}, \bar{y})
\]

- Compromise between single and complete link.

- Two options:
 - Averaged across all ordered pairs in the merged cluster
 - Averaged over all pairs between the two original clusters

- No clear difference in efficacy
Computing Group Average Similarity

- Always maintain sum of vectors in each cluster.

\[\bar{s}(c_j) = \sum_{\vec{x} \in c_j} \vec{x} \]

- Compute similarity of clusters in constant time:

\[
\text{sim}(c_i, c_j) = \frac{(\bar{s}(c_i) + \bar{s}(c_j)) \cdot (\bar{s}(c_i) + \bar{s}(c_j)) - (|c_i| + |c_j|)}{(|c_i| + |c_j|)(|c_i| + |c_j| - 1)}
\]
What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the *intra-class* (that is, intra-cluster) similarity is high
 - the *inter-class* similarity is low
 - The measured quality of a clustering depends on both the document representation and the similarity measure used
External criteria for clustering quality

- Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data

- Assesses a clustering with respect to ground truth ... requires labeled data

- Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, $\omega_1, \omega_2, \ldots, \omega_K$ with n_i members.
External Evaluation of Cluster Quality

- Simple measure: purity, the ratio between the dominant class in the cluster \(\pi_i \) and the size of cluster, \(\omega_i \)

\[
Purity(\omega_i) = \frac{1}{n_i} \max_j (n_{ij}) \quad j \in C
\]

- Biased because having \(n \) clusters maximizes purity
- Others are entropy of classes in clusters (or mutual information between classes and clusters)
Purity example

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5
Rand Index measures between pair decisions. Here RI = 0.68

<table>
<thead>
<tr>
<th>Number of points</th>
<th>Same Cluster in clustering</th>
<th>Different Clusters in clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same class in ground truth</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Different classes in ground truth</td>
<td>20</td>
<td>72</td>
</tr>
</tbody>
</table>
Rand index and Cluster F-measure

\[RI = \frac{A + D}{A + B + C + D} \]

Compare with standard Precision and Recall:

\[P = \frac{A}{A + B} \quad R = \frac{A}{A + C} \]

People also define and use a cluster F-measure, which is probably a better measure.
Final word and resources

- In clustering, clusters are inferred from the data without human input (unsupervised learning)

- However, in practice, it’s a bit less clear: there are many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents, . . .

- Resources
 - IIR 16 except 16.5
 - IIR 17.1–17.3
Part 2. Clustering Labeling

- Clustering Labeling Problem
 In many applications: analysis tasks, user interfaces...
 Choose a label to describe a cluster.

- Three labeling methods
 - Mutual information (information gain)
 - Most highly weighted terms in centroid
 - Use the title of the document closest to the centroid of the cluster

- A Phrase-based Method for Hierarchical Clustering of Web Snippets
 - Zhao Li and Xindong Wu, AAAI 2010, poster, accepted
Suffix Tree Clustering

- The documents of the same group share a certain of terms and phrases.
- Two steps:
 - Identifying base clusters: constructing an inverted index of phrases by using a suffix tree.
 - Combining the base clusters: merging base clusters with a high overlap in their documents.
- Suffix Tree
 - Documents are treated as strings of words.
 - Each edge is labeled as a string such that each suffix of strings corresponds to exactly one path from the tree's root to a leaf.
An Example

Three snippets:
1. Cat ate cheese
2. Mouse ate cheese too
3. Cat ate mouse too

<table>
<thead>
<tr>
<th>Node</th>
<th>Phrase</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>cat ate</td>
<td>1,3</td>
</tr>
<tr>
<td>b</td>
<td>ate</td>
<td>1,2,3</td>
</tr>
<tr>
<td>c</td>
<td>cheese</td>
<td>1,2</td>
</tr>
<tr>
<td>d</td>
<td>mouse</td>
<td>2,3</td>
</tr>
<tr>
<td>e</td>
<td>too</td>
<td>2,3</td>
</tr>
<tr>
<td>f</td>
<td>ate cheese</td>
<td>1,2</td>
</tr>
</tbody>
</table>
Some Issues

- Suffix Tree Clustering effectively gives cluster labels, but generates many clusters and usually chooses top 10 clusters.

- A hierarchical agglomerative clustering algorithm starts with all documents belonging to their individual clusters and combines the most similar clusters until the desired number of clusters is obtained.

- However, a basic hierarchical agglomerative clustering algorithm is subject to generating meaningful cluster labels.
A Phrase-based Method for Hierarchical Clustering of Web Snippets

1: Extract all the n-grams as candidate phrases $P = \{p_1, p_2, ..., p_l\}$, based on suffix tree built from a collection of web snippets $D = \{d_1, d_2, ..., d_m\}$.

2: Build a phrase-based document index $R = \{r_{p_1}, r_{p_2}, ..., r_{p_l}\}$, where r_{p_k} contains the indexed documents of p_k.

3: Construct a Vector Space Model of D based on $tf-idf$ measurement, and calculate the proximity matrix for phrases by using group average technique:

$$proximity(p_i, p_j) = \frac{\sum_{d_i \in r_{p_i}, d_j \in r_{p_j}} proximity(d_i, d_j)}{|r_{p_i}|*|r_{p_j}|}.$$

4: while the desired number of clusters is not obtained do

5: Merge the closest two clusters, and select a phrase of highest number of indexing documents from the merging clusters as the new cluster label.

6: Update the proximity matrix between the new cluster and the original clusters.

7: end while

8: Assign the snippets whose indexing phrases belong to the same cluster.

9: Assign the remaining snippets based on their k-nearest assigned neighbors.
A Phrase-based Method for Hierarchical Clustering of Web Snippets

- Five hierarchically well-organized datasets from the Open Document Project (http://www.dmoz.org/) were selected.
- The number of *n-grams of phrase was set as [2,5].* Stop words and unique indexing phrases were filtered. Moreover, the phrases of frequency less than 3, and the words of frequency less than 2 were ignored.

<table>
<thead>
<tr>
<th>query</th>
<th># classes</th>
<th># docs</th>
<th># words</th>
<th># phrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>topology</td>
<td>4</td>
<td>89</td>
<td>169</td>
<td>18</td>
</tr>
<tr>
<td>geometry</td>
<td>5</td>
<td>197</td>
<td>364</td>
<td>54</td>
</tr>
<tr>
<td>number theory</td>
<td>7</td>
<td>288</td>
<td>470</td>
<td>70</td>
</tr>
<tr>
<td>meat</td>
<td>8</td>
<td>352</td>
<td>442</td>
<td>150</td>
</tr>
<tr>
<td>knowledge</td>
<td>9</td>
<td>831</td>
<td>1186</td>
<td>266</td>
</tr>
</tbody>
</table>

Table 1: *Summary of datasets*
A Phrase-based Method for Hierarchical Clustering of Web Snippets

- Results (F-measure and entropy)
Conclusions for Section 2

- In addition to generating informative labels, the choosing of the number of clusters is circumvented by using a hierarchy of clusters rather than clusters residing at the same level.

- For clustering web snippets, the number of phrases is far less than that of snippets, which can be used to construct a concise hierarchy tree.

- In contrast to HAC, documents consisting of more than one phrase are taken into account in different levels of clustering.